These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 38332031)
1. Regulation of TRI5 expression and deoxynivalenol biosynthesis by a long non-coding RNA in Fusarium graminearum. Huang P; Yu X; Liu H; Ding M; Wang Z; Xu JR; Jiang C Nat Commun; 2024 Feb; 15(1):1216. PubMed ID: 38332031 [TBL] [Abstract][Full Text] [Related]
2. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Jiang C; Zhang C; Wu C; Sun P; Hou R; Liu H; Wang C; Xu JR Environ Microbiol; 2016 Nov; 18(11):3689-3701. PubMed ID: 26940955 [TBL] [Abstract][Full Text] [Related]
3. Identification of new genes positively regulated by Tri10 and a regulatory network for trichothecene mycotoxin production. Peplow AW; Tag AG; Garifullina GF; Beremand MN Appl Environ Microbiol; 2003 May; 69(5):2731-6. PubMed ID: 12732543 [TBL] [Abstract][Full Text] [Related]
4. The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum. Yin T; Zhang Q; Wang J; Liu H; Wang C; Xu JR; Jiang C Mol Plant Pathol; 2018 Mar; 19(3):552-563. PubMed ID: 28142217 [TBL] [Abstract][Full Text] [Related]
5. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum. Hou R; Jiang C; Zheng Q; Wang C; Xu JR Mol Plant Pathol; 2015 Dec; 16(9):987-99. PubMed ID: 25781642 [TBL] [Abstract][Full Text] [Related]
6. Silencing efficiency of dsRNA fragments targeting Fusarium graminearum TRI6 and patterns of small interfering RNA associated with reduced virulence and mycotoxin production. Baldwin T; Islamovic E; Klos K; Schwartz P; Gillespie J; Hunter S; Bregitzer P PLoS One; 2018; 13(8):e0202798. PubMed ID: 30161200 [TBL] [Abstract][Full Text] [Related]
7. Magnesium represses trichothecene biosynthesis and modulates Tri5, Tri6, and Tri12 genes expression in Fusarium graminearum. Pinson-Gadais L; Richard-Forget F; Frasse P; Barreau C; Cahagnier B; Richard-Molard D; Bakan B Mycopathologia; 2008 Jan; 165(1):51-9. PubMed ID: 17968674 [TBL] [Abstract][Full Text] [Related]
8. Leucine metabolism regulates TRI6 expression and affects deoxynivalenol production and virulence in Fusarium graminearum. Subramaniam R; Narayanan S; Walkowiak S; Wang L; Joshi M; Rocheleau H; Ouellet T; Harris LJ Mol Microbiol; 2015 Nov; 98(4):760-9. PubMed ID: 26248604 [TBL] [Abstract][Full Text] [Related]
9. Modelling the relationship between environmental factors, transcriptional genes and deoxynivalenol mycotoxin production by strains of two Fusarium species. Schmidt-Heydt M; Parra R; Geisen R; Magan N J R Soc Interface; 2011 Jan; 8(54):117-26. PubMed ID: 20462881 [TBL] [Abstract][Full Text] [Related]
10. A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression. Tag AG; Garifullina GF; Peplow AW; Ake C; Phillips TD; Hohn TM; Beremand MN Appl Environ Microbiol; 2001 Nov; 67(11):5294-302. PubMed ID: 11679358 [TBL] [Abstract][Full Text] [Related]
11. Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Seong KY; Pasquali M; Zhou X; Song J; Hilburn K; McCormick S; Dong Y; Xu JR; Kistler HC Mol Microbiol; 2009 Apr; 72(2):354-67. PubMed ID: 19320833 [TBL] [Abstract][Full Text] [Related]
12. Flippases play specific but distinct roles in the development, pathogenicity, and secondary metabolism of Fusarium graminearum. Yun Y; Guo P; Zhang J; You H; Guo P; Deng H; Hao Y; Zhang L; Wang X; Abubakar YS; Zhou J; Lu G; Wang Z; Zheng W Mol Plant Pathol; 2020 Oct; 21(10):1307-1321. PubMed ID: 32881238 [TBL] [Abstract][Full Text] [Related]
14. Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum. Nasmith CG; Walkowiak S; Wang L; Leung WW; Gong Y; Johnston A; Harris LJ; Guttman DS; Subramaniam R PLoS Pathog; 2011 Sep; 7(9):e1002266. PubMed ID: 21980289 [TBL] [Abstract][Full Text] [Related]
15. The Fungicidal Activity of Tebuconazole Enantiomers against Fusarium graminearum and Its Selective Effect on DON Production under Different Conditions. Diao X; Han Y; Liu C J Agric Food Chem; 2018 Apr; 66(14):3637-3643. PubMed ID: 29562133 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional dynamics of Fusarium pseudograminearum under high fungicide stress and the important role of FpZRA1 in fungal pathogenicity and DON toxin production. Jiang J; He K; Wang X; Zhang Y; Guo X; Qian L; Gao X; Liu S Int J Biol Macromol; 2024 Sep; 276(Pt 2):133662. PubMed ID: 39025188 [TBL] [Abstract][Full Text] [Related]