These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 38332031)
21. Expression of the Fusarium graminearum terpenome and involvement of the endoplasmic reticulum-derived toxisome. Flynn CM; Broz K; Jonkers W; Schmidt-Dannert C; Kistler HC Fungal Genet Biol; 2019 Mar; 124():78-87. PubMed ID: 30664933 [TBL] [Abstract][Full Text] [Related]
22. Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence. Gardiner DM; Kazan K; Manners JM Mol Plant Microbe Interact; 2009 Dec; 22(12):1588-600. PubMed ID: 19888824 [TBL] [Abstract][Full Text] [Related]
23. Inhibition of Fusarium trichothecene biosynthesis by yeast extract components extractable with ethyl acetate. Tanaka Y; Nakajima Y; Maeda K; Matsuyama M; Kanamaru K; Kobayashi T; Ohsato S; Kimura M Int J Food Microbiol; 2019 Jan; 289():24-29. PubMed ID: 30193122 [TBL] [Abstract][Full Text] [Related]
24. Association of single nucleotide polymorphic sites in candidate genes with aggressiveness and deoxynivalenol production in Fusarium graminearum causing wheat head blight. Talas F; Würschum T; Reif JC; Parzies HK; Miedaner T BMC Genet; 2012 Mar; 13():14. PubMed ID: 22409447 [TBL] [Abstract][Full Text] [Related]
26. lncRsp1, a long noncoding RNA, influences Fgsp1 expression and sexual reproduction in Fusarium graminearum. Wang J; Zeng W; Cheng J; Xie J; Fu Y; Jiang D; Lin Y Mol Plant Pathol; 2022 Feb; 23(2):265-277. PubMed ID: 34841640 [TBL] [Abstract][Full Text] [Related]
27. Trehalose-6-phosphate phosphatase inhibitor: N-(phenylthio) phthalimide, which can inhibit the DON biosynthesis of Fusarium graminearum. Xu C; Chen H; Wu Q; Wu Y; Daly P; Chen J; Yang H; Wei L; Zhuang Y Pestic Biochem Physiol; 2021 Oct; 178():104917. PubMed ID: 34446193 [TBL] [Abstract][Full Text] [Related]
28. Fusarium graminearum gene deletion mutants map1 and tri5 reveal similarities and differences in the pathogenicity requirements to cause disease on Arabidopsis and wheat floral tissue. Cuzick A; Urban M; Hammond-Kosack K New Phytol; 2008; 177(4):990-1000. PubMed ID: 18179606 [TBL] [Abstract][Full Text] [Related]
29. Enantioselective effect of chiral fungicide prothioconazole on Fusarium graminearum: Fungicidal activity and DON biosynthesis. Li C; Liu C Environ Pollut; 2022 Aug; 307():119553. PubMed ID: 35640724 [TBL] [Abstract][Full Text] [Related]
30. Altered trichothecene biosynthesis in TRI6-silenced transformants of Fusarium culmorum influences the severity of crown and foot rot on durum wheat seedlings. Scherm B; Orrù M; Balmas V; Spanu F; Azara E; Delogu G; Hammond TM; Keller NP; Migheli Q Mol Plant Pathol; 2011 Oct; 12(8):759-71. PubMed ID: 21726376 [TBL] [Abstract][Full Text] [Related]
31. Genotyping and phenotyping of Fusarium graminearum isolates from Germany related to their mycotoxin biosynthesis. de Kuppler AL; Steiner U; Sulyok M; Krska R; Oerke EC Int J Food Microbiol; 2011 Nov; 151(1):78-86. PubMed ID: 21889226 [TBL] [Abstract][Full Text] [Related]
32. Enantioselective Effect of Flutriafol on Growth, Deoxynivalenol Production, and Li C; Fan S; Wen Y; Tan Z; Liu C J Agric Food Chem; 2021 Feb; 69(5):1684-1692. PubMed ID: 33522237 [TBL] [Abstract][Full Text] [Related]
33. Isolation and identification of precocenes and piperitone from essential oils as specific inhibitors of trichothecene production by Fusarium graminearum. Yaguchi A; Yoshinari T; Tsuyuki R; Takahashi H; Nakajima T; Sugita-Konishi Y; Nagasawa H; Sakuda S J Agric Food Chem; 2009 Feb; 57(3):846-51. PubMed ID: 19191669 [TBL] [Abstract][Full Text] [Related]
34. Quantification of Tri5 gene, expression, and deoxynivalenol production during the malting of barley. Vegi A; Schwarz P; Wolf-Hall CE Int J Food Microbiol; 2011 Nov; 150(2-3):150-6. PubMed ID: 21871683 [TBL] [Abstract][Full Text] [Related]
35. SNARE protein FgVam7 controls growth, asexual and sexual development, and plant infection in Fusarium graminearum. Zhang H; Li B; Fang Q; Li Y; Zheng X; Zhang Z Mol Plant Pathol; 2016 Jan; 17(1):108-19. PubMed ID: 25880818 [TBL] [Abstract][Full Text] [Related]
36. Impact of Five Succinate Dehydrogenase Inhibitors on DON Biosynthesis of Xu C; Li M; Zhou Z; Li J; Chen D; Duan Y; Zhou M Toxins (Basel); 2019 May; 11(5):. PubMed ID: 31096549 [TBL] [Abstract][Full Text] [Related]
37. Nucleoside Diphosphate Kinase FgNdpk Is Required for DON Production and Pathogenicity by Regulating the Growth and Toxisome Formation of Mao X; Li L; Abubakar YS; Li Y; Luo Z; Chen M; Zheng W; Wang Z; Zheng H J Agric Food Chem; 2024 May; 72(17):9637-9646. PubMed ID: 38642053 [TBL] [Abstract][Full Text] [Related]
38. 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) inhibits trichothecene production by Fusarium graminearum through suppression of Tri6 expression. Etzerodt T; Maeda K; Nakajima Y; Laursen B; Fomsgaard IS; Kimura M Int J Food Microbiol; 2015 Dec; 214():123-128. PubMed ID: 26276561 [TBL] [Abstract][Full Text] [Related]
39. Comparison of Trichothecene Biosynthetic Gene Expression between Fusarium graminearum and Fusarium asiaticum. Lee T; Lee SH; Shin JY; Kim HK; Yun SH; Kim HY; Lee S; Ryu JG Plant Pathol J; 2014 Mar; 30(1):33-42. PubMed ID: 25288983 [TBL] [Abstract][Full Text] [Related]
40. Antifungal Activity of Quinofumelin against Xiu Q; Bi L; Xu H; Li T; Zhou Z; Li Z; Wang J; Duan Y; Zhou M Toxins (Basel); 2021 May; 13(5):. PubMed ID: 34066154 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]