These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38332306)

  • 1. Using high-resolution microscopy data to generate realistic structures for electromagnetic FDTD simulations from complex biological models.
    Ball JM; Li W
    Nat Protoc; 2024 May; 19(5):1348-1380. PubMed ID: 38332306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FDTD simulation of electromagnetic wave scattering from retina cells.
    Abdallah SS; Ramahi O; Bizheva K
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1639-42. PubMed ID: 18002287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis.
    Nagaoka T; Watanabe S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():327-30. PubMed ID: 21096967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation.
    Nagaoka T; Watanabe S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():401-4. PubMed ID: 22254333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on radiation characteristic of plasma antenna through FDTD method.
    Zhou J; Fang J; Lu Q; Liu F
    ScientificWorldJournal; 2014; 2014():290148. PubMed ID: 25114961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating three-dimensional FDTD calculations on GPU clusters for electromagnetic field simulation.
    Nagaoka T; Watanabe S
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5691-4. PubMed ID: 23367222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries.
    Lee CT; Laughlin JG; Angliviel de La Beaumelle N; Amaro RE; McCammon JA; Ramamoorthi R; Holst M; Rangamani P
    PLoS Comput Biol; 2020 Apr; 16(4):e1007756. PubMed ID: 32251448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-domain finite-difference/finite-element hybrid simulations of radio frequency coils in magnetic resonance imaging.
    Wang S; Duyn JH
    Phys Med Biol; 2008 May; 53(10):2677-92. PubMed ID: 18445873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of MR B+1 imaging for validation of FDTD electromagnetic simulations of human anatomies.
    Van den Berg CA; Bartels LW; van den Bergen B; Kroeze H; de Leeuw AA; Van de Kamer JB; Lagendijk JJ
    Phys Med Biol; 2006 Oct; 51(19):4735-46. PubMed ID: 16985267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FDTD simulations of localization and enhancements on fractal plasmonics nanostructures.
    Buil S; Laverdant J; Berini B; Maso P; Hermier JP; Quélin X
    Opt Express; 2012 May; 20(11):11968-75. PubMed ID: 22714182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials.
    Udagedara I; Premaratne M; Rukhlenko ID; Hattori HT; Agrawal GP
    Opt Express; 2009 Nov; 17(23):21179-90. PubMed ID: 19997357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A parallel graded-mesh FDTD algorithm for human-antenna interaction problems.
    Catarinucci L; Tarricone L
    Int J Occup Saf Ergon; 2009; 15(1):45-52. PubMed ID: 19272239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An object-oriented designed finite-difference time-domain simulator for electromagnetic analysis and design in MRI--applications to high field analyses.
    Wei Q; Liu F; Xia L; Crozier S
    J Magn Reson; 2005 Feb; 172(2):222-30. PubMed ID: 15649749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses.
    Simicevic N
    Phys Med Biol; 2008 Mar; 53(6):1795-809. PubMed ID: 18367803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-difference Time-domain (FDTD) Optical Simulations: A Primer for the Life Sciences and Bio-Inspired Engineering.
    McCoy DE; Shneidman AV; Davis AL; Aizenberg J
    Micron; 2021 Dec; 151():103160. PubMed ID: 34678583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A memory efficient method of calculating specific absorption rate in CW FDTD simulations.
    Furse CM; Gandhi OP
    IEEE Trans Biomed Eng; 1996 May; 43(5):558-60. PubMed ID: 8849469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods.
    Hosokawa A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional FDTD simulation of biomaterial exposure to electromagnetic nanopulses.
    Simicevic N
    Phys Med Biol; 2005 Nov; 50(21):5041-53. PubMed ID: 16237240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Far-field superposition method for three-dimensional computation of light scattering from multiple cells.
    Starosta MS; Dunn AK
    J Biomed Opt; 2010; 15(5):055006. PubMed ID: 21054088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acceleration of FDTD mode solver by high-performance computing techniques.
    Han L; Xi Y; Huang WP
    Opt Express; 2010 Jun; 18(13):13679-92. PubMed ID: 20588502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.