BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38332337)

  • 1. Prioritizing river basins for nutrient studies.
    Tesoriero AJ; Robertson DM; Green CT; Böhlke JK; Harvey JW; Qi SL
    Environ Monit Assess; 2024 Feb; 196(3):248. PubMed ID: 38332337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prioritizing river basins for intensive monitoring and assessment by the US Geological Survey.
    Van Metre PC; Qi S; Deacon J; Dieter C; Driscoll JM; Fienen M; Kenney T; Lambert P; Lesmes D; Mason CA; Mueller-Solger A; Musgrove M; Painter J; Rosenberry D; Sprague L; Tesoriero AJ; Windham-Myers L; Wolock D
    Environ Monit Assess; 2020 Jun; 192(7):458. PubMed ID: 32594332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The MARINA model (Model to Assess River Inputs of Nutrients to seAs): Model description and results for China.
    Strokal M; Kroeze C; Wang M; Bai Z; Ma L
    Sci Total Environ; 2016 Aug; 562():869-888. PubMed ID: 27115624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Septic systems drive nutrient enrichment of groundwaters and eutrophication in the urbanized Indian River Lagoon, Florida.
    Herren LW; Brewton RA; Wilking LE; Tarnowski ME; Vogel MA; Lapointe BE
    Mar Pollut Bull; 2021 Nov; 172():112928. PubMed ID: 34706476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Septic systems contribute to nutrient pollution and harmful algal blooms in the St. Lucie Estuary, Southeast Florida, USA.
    Lapointe BE; Herren LW; Paule AL
    Harmful Algae; 2017 Dec; 70():1-22. PubMed ID: 29169565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient loads in the river mouth of the Río Verde basin in Jalisco, Mexico: how to prevent eutrophication in the future reservoir?
    Jayme-Torres G; Hansen AM
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20497-20509. PubMed ID: 28980187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large reductions in nutrient losses needed to avoid future coastal eutrophication across Europe.
    Ural-Janssen A; Kroeze C; Meers E; Strokal M
    Mar Environ Res; 2024 May; 197():106446. PubMed ID: 38518406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. River and lake nutrient targets that support ecological status: European scale gap analysis and strategies for the implementation of the Water Framework Directive.
    Nikolaidis NP; Phillips G; Poikane S; Várbíró G; Bouraoui F; Malagó A; Lilli MΑ
    Sci Total Environ; 2022 Mar; 813():151898. PubMed ID: 34838557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum.
    Paerl H
    Adv Exp Med Biol; 2008; 619():217-37. PubMed ID: 18461771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrient inputs and hydrology together determine biogeochemical status of the Loire River (France): Current situation and possible future scenarios.
    Garnier J; Ramarson A; Billen G; Théry S; Thiéry D; Thieu V; Minaudo C; Moatar F
    Sci Total Environ; 2018 Oct; 637-638():609-624. PubMed ID: 29758418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agricultural nutrient inputs to rivers and groundwaters in the UK: policy, environmental management and research needs.
    Withers PJ; Lord EI
    Sci Total Environ; 2002 Jan; 282-283():9-24. PubMed ID: 11852908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size and temperature drive nutrient retention potential across water bodies in China.
    Shen W; Li S; Basu NB; Ury EA; Jing Q; Zhang L
    Water Res; 2023 Jul; 239():120054. PubMed ID: 37201376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrient dynamics and eutrophication assessment in the tropical river system of Saigon - Dongnai (southern Vietnam).
    Nguyen TTN; Némery J; Gratiot N; Strady E; Tran VQ; Nguyen AT; Aimé J; Peyne A
    Sci Total Environ; 2019 Feb; 653():370-383. PubMed ID: 30412882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients.
    Paerl HW; Gardner WS; Havens KE; Joyner AR; McCarthy MJ; Newell SE; Qin B; Scott JT
    Harmful Algae; 2016 Apr; 54():213-222. PubMed ID: 28073478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of nutrient discharge from the Yangtze River to the East China Sea and the identification of nutrient sources.
    Tong Y; Bu X; Chen J; Zhou F; Chen L; Liu M; Tan X; Yu T; Zhang W; Mi Z; Ma L; Wang X; Ni J
    J Hazard Mater; 2017 Jan; 321():728-736. PubMed ID: 27744238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dominance of evaporation on lacustrine groundwater discharge to regulate lake nutrient state and algal blooms.
    Shi X; Luo X; Jiao JJ; Zuo J
    Water Res; 2022 Jul; 219():118620. PubMed ID: 35598468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excess nutrient loads to Lake Taihu: Opportunities for nutrient reduction.
    Wang M; Strokal M; Burek P; Kroeze C; Ma L; Janssen ABG
    Sci Total Environ; 2019 May; 664():865-873. PubMed ID: 30769310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutrient limitation of phytoplankton in three tributaries of Chesapeake Bay: Detecting responses following nutrient reductions.
    Zhang Q; Fisher TR; Buchanan C; Gustafson AB; Karrh RR; Murphy RR; Testa JM; Tian R; Tango PJ
    Water Res; 2022 Nov; 226():119099. PubMed ID: 36302271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin.
    Andersen HE; Kronvang B; Larsen SE; Hoffmann CC; Jensen TS; Rasmussen EK
    Sci Total Environ; 2006 Jul; 365(1-3):223-37. PubMed ID: 16647104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eutrophication of freshwater and coastal marine ecosystems: a global problem.
    Smith VH
    Environ Sci Pollut Res Int; 2003; 10(2):126-39. PubMed ID: 12729046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.