These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 38332735)
1. Defect in degradation of glycogenin-exposed residual glycogen in lysosomes is the fundamental pathomechanism of Pompe disease. Zhang N; Liu F; Zhao Y; Sun X; Wen B; Lu JQ; Yan C; Li D J Pathol; 2024 May; 263(1):8-21. PubMed ID: 38332735 [TBL] [Abstract][Full Text] [Related]
2. Dysregulation of multiple facets of glycogen metabolism in a murine model of Pompe disease. Taylor KM; Meyers E; Phipps M; Kishnani PS; Cheng SH; Scheule RK; Moreland RJ PLoS One; 2013; 8(2):e56181. PubMed ID: 23457523 [TBL] [Abstract][Full Text] [Related]
3. Lentiviral gene therapy with IGF2-tagged GAA normalizes the skeletal muscle proteome in murine Pompe disease. Liang Q; Vlaar EC; Pijnenburg JM; Rijkers E; Demmers JAA; Vulto AG; van der Ploeg AT; van Til NP; Pijnappel WWMP J Proteomics; 2024 Jan; 291():105037. PubMed ID: 38288553 [TBL] [Abstract][Full Text] [Related]
4. Lysosomal glycogen accumulation in Pompe disease results in disturbed cytoplasmic glycogen metabolism. Canibano-Fraile R; Harlaar L; Dos Santos CA; Hoogeveen-Westerveld M; Demmers JAA; Snijders T; Lijnzaad P; Verdijk RM; van der Beek NAME; van Doorn PA; van der Ploeg AT; Brusse E; Pijnappel WWMP; Schaaf GJ J Inherit Metab Dis; 2023 Jan; 46(1):101-115. PubMed ID: 36111639 [TBL] [Abstract][Full Text] [Related]
5. Failure of Autophagy in Pompe Disease. Do H; Meena NK; Raben N Biomolecules; 2024 May; 14(5):. PubMed ID: 38785980 [TBL] [Abstract][Full Text] [Related]
6. Murine muscle cell models for Pompe disease and their use in studying therapeutic approaches. Takikita S; Myerowitz R; Zaal K; Raben N; Plotz PH Mol Genet Metab; 2009 Apr; 96(4):208-17. PubMed ID: 19167256 [TBL] [Abstract][Full Text] [Related]
7. The pharmacological chaperone AT2220 increases the specific activity and lysosomal delivery of mutant acid alpha-glucosidase, and promotes glycogen reduction in a transgenic mouse model of Pompe disease. Khanna R; Powe AC; Lun Y; Soska R; Feng J; Dhulipala R; Frascella M; Garcia A; Pellegrino LJ; Xu S; Brignol N; Toth MJ; Do HV; Lockhart DJ; Wustman BA; Valenzano KJ PLoS One; 2014; 9(7):e102092. PubMed ID: 25036864 [TBL] [Abstract][Full Text] [Related]
8. GAA deficiency disrupts distal airway cells in Pompe disease. El Haddad L; Lai E; Murthy PKL; Biswas DD; Soufny R; Roger AL; Tata PR; ElMallah MK Am J Physiol Lung Cell Mol Physiol; 2023 Sep; 325(3):L288-L298. PubMed ID: 37366541 [TBL] [Abstract][Full Text] [Related]
9. Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease. Yi H; Sun T; Armstrong D; Borneman S; Yang C; Austin S; Kishnani PS; Sun B J Mol Med (Berl); 2017 May; 95(5):513-521. PubMed ID: 28154884 [TBL] [Abstract][Full Text] [Related]
10. Replacing acid alpha-glucosidase in Pompe disease: recombinant and transgenic enzymes are equipotent, but neither completely clears glycogen from type II muscle fibers. Raben N; Fukuda T; Gilbert AL; de Jong D; Thurberg BL; Mattaliano RJ; Meikle P; Hopwood JJ; Nagashima K; Nagaraju K; Plotz PH Mol Ther; 2005 Jan; 11(1):48-56. PubMed ID: 15585405 [TBL] [Abstract][Full Text] [Related]
11. Modulation of glycogen synthesis by RNA interference: towards a new therapeutic approach for glycogenosis type II. Douillard-Guilloux G; Raben N; Takikita S; Batista L; Caillaud C; Richard E Hum Mol Genet; 2008 Dec; 17(24):3876-86. PubMed ID: 18782850 [TBL] [Abstract][Full Text] [Related]
12. Reduction of Autophagic Accumulation in Pompe Disease Mouse Model Following Gene Therapy. McCall AL; Stankov SG; Cowen G; Cloutier D; Zhang Z; Yang L; Clement N; Falk DJ; Byrne BJ Curr Gene Ther; 2019; 19(3):197-207. PubMed ID: 31223086 [TBL] [Abstract][Full Text] [Related]
13. Rescue of Advanced Pompe Disease in Mice with Hepatic Expression of Secretable Acid α-Glucosidase. Cagin U; Puzzo F; Gomez MJ; Moya-Nilges M; Sellier P; Abad C; Van Wittenberghe L; Daniele N; Guerchet N; Gjata B; Collaud F; Charles S; Sola MS; Boyer O; Krijnse-Locker J; Ronzitti G; Colella P; Mingozzi F Mol Ther; 2020 Sep; 28(9):2056-2072. PubMed ID: 32526204 [TBL] [Abstract][Full Text] [Related]
14. Pompe Disease: New Developments in an Old Lysosomal Storage Disorder. Meena NK; Raben N Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32962155 [TBL] [Abstract][Full Text] [Related]
16. Clinical features of Pompe disease. Manganelli F; Ruggiero L Acta Myol; 2013 Oct; 32(2):82-4. PubMed ID: 24399863 [TBL] [Abstract][Full Text] [Related]
17. Suppression of mTORC1 activation in acid-α-glucosidase-deficient cells and mice is ameliorated by leucine supplementation. Shemesh A; Wang Y; Yang Y; Yang GS; Johnson DE; Backer JM; Pessin JE; Zong H Am J Physiol Regul Integr Comp Physiol; 2014 Nov; 307(10):R1251-9. PubMed ID: 25231351 [TBL] [Abstract][Full Text] [Related]
18. Glycophagy: An emerging target in pathology. Zhao H; Tang M; Liu M; Chen L Clin Chim Acta; 2018 Sep; 484():298-303. PubMed ID: 29894781 [TBL] [Abstract][Full Text] [Related]
19. Systemic Delivery of AAVB1-GAA Clears Glycogen and Prolongs Survival in a Mouse Model of Pompe Disease. Keeler AM; Zieger M; Todeasa SH; McCall AL; Gifford JC; Birsak S; Choudhury SR; Byrne BJ; Sena-Esteves M; ElMallah MK Hum Gene Ther; 2019 Jan; 30(1):57-68. PubMed ID: 29901418 [TBL] [Abstract][Full Text] [Related]
20. Autophagy in skeletal muscle: implications for Pompe disease. Shea L; Raben N Int J Clin Pharmacol Ther; 2009; 47 Suppl 1(Suppl 1):S42-7. PubMed ID: 20040311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]