These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38332832)

  • 1. How cycloalkane fusion enhances the cycloaddition reactivity of dibenzocyclooctynes.
    Svatunek D; Murnauer A; Tan Z; Houk KN; Lang K
    Chem Sci; 2024 Feb; 15(6):2229-2235. PubMed ID: 38332832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photo-induced and Rapid Labeling of Tetrazine-Bearing Proteins via Cyclopropenone-Caged Bicyclononynes.
    Mayer SV; Murnauer A; von Wrisberg MK; Jokisch ML; Lang K
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15876-15882. PubMed ID: 31476269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation-strain analysis reveals unexpected origin of fast reactivity in heteroaromatic azadiene inverse-electron-demand diels-alder cycloadditions.
    Talbot A; Devarajan D; Gustafson SJ; Fernández I; Bickelhaupt FM; Ess DH
    J Org Chem; 2015 Jan; 80(1):548-58. PubMed ID: 25490250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioorthogonal Cycloadditions: Computational Analysis with the Distortion/Interaction Model and Predictions of Reactivities.
    Liu F; Liang Y; Houk KN
    Acc Chem Res; 2017 Sep; 50(9):2297-2308. PubMed ID: 28876890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical elucidation of the origins of substituent and strain effects on the rates of Diels-Alder reactions of 1,2,4,5-tetrazines.
    Liu F; Liang Y; Houk KN
    J Am Chem Soc; 2014 Aug; 136(32):11483-93. PubMed ID: 25041719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly accelerated inverse electron-demand cycloaddition of electron-deficient azides with aliphatic cyclooctynes.
    Dommerholt J; van Rooijen O; Borrmann A; Guerra CF; Bickelhaupt FM; van Delft FL
    Nat Commun; 2014 Nov; 5():5378. PubMed ID: 25382411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substituent Effects in Bioorthogonal Diels-Alder Reactions of 1,2,4,5-Tetrazines.
    Houszka N; Mikula H; Svatunek D
    Chemistry; 2023 May; 29(29):e202300345. PubMed ID: 36853623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactivity and regioselectivity in 1,3-dipolar cycloadditions of azides to strained alkynes and alkenes: a computational study.
    Schoenebeck F; Ess DH; Jones GO; Houk KN
    J Am Chem Soc; 2009 Jun; 131(23):8121-33. PubMed ID: 19459632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophilic Azides for Materials Synthesis and Chemical Biology.
    Xie S; Sundhoro M; Houk KN; Yan M
    Acc Chem Res; 2020 Apr; 53(4):937-948. PubMed ID: 32207916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition states of strain-promoted metal-free click chemistry: 1,3-dipolar cycloadditions of phenyl azide and cyclooctynes.
    Ess DH; Jones GO; Houk KN
    Org Lett; 2008 Apr; 10(8):1633-6. PubMed ID: 18363405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational model to predict the Diels-Alder reactivity of aryl/alkyl-substituted tetrazines.
    Svatunek D; Denk C; Mikula H
    Monatsh Chem; 2018; 149(4):833-837. PubMed ID: 29681659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemoselectivity of Tertiary Azides in Strain-Promoted Alkyne-Azide Cycloadditions.
    Svatunek D; Houszka N; Hamlin TA; Bickelhaupt FM; Mikula H
    Chemistry; 2019 Jan; 25(3):754-758. PubMed ID: 30347481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive Multivariate Models for Bioorthogonal Inverse-Electron Demand Diels-Alder Reactions.
    Ravasco JMJM; Coelho JAS
    J Am Chem Soc; 2020 Mar; 142(9):4235-4241. PubMed ID: 32057243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary Orbital Interactions Enhance the Reactivity of Alkynes in Diels-Alder Cycloadditions.
    Levandowski BJ; Svatunek D; Sohr B; Mikula H; Houk KN
    J Am Chem Soc; 2019 Feb; 141(6):2224-2227. PubMed ID: 30693769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactivity and regioselectivity in reactions of methyl and ethyl azides with cyclooctynes: activation strain model and energy decomposition analysis.
    de S Vilhena F; de M Carneiro JW
    J Mol Model; 2017 Jan; 23(1):14. PubMed ID: 28032223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics of the Diels-Alder reactions of tetrazines with alkenes and N2 extrusions from adducts.
    Törk L; Jiménez-Osés G; Doubleday C; Liu F; Houk KN
    J Am Chem Soc; 2015 Apr; 137(14):4749-58. PubMed ID: 25726899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper-Free Click for PET: Rapid 1,3-Dipolar Cycloadditions with a Fluorine-18 Cyclooctyne.
    Carpenter RD; Hausner SH; Sutcliffe JL
    ACS Med Chem Lett; 2011 Dec; 2(12):885-9. PubMed ID: 24900276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme- or light-triggered cyclopropenes for bioorthogonal ligation.
    Jiang T; Laughlin ST
    Methods Enzymol; 2020; 641():1-34. PubMed ID: 32713519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From mechanism to mouse: a tale of two bioorthogonal reactions.
    Sletten EM; Bertozzi CR
    Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dibenzocyclooctynes: Effect of Aryl Substitution on Their Reactivity toward Strain-Promoted Alkyne-Azide Cycloaddition.
    Terzic V; Pousse G; Méallet-Renault R; Grellier P; Dubois J
    J Org Chem; 2019 Jul; 84(13):8542-8551. PubMed ID: 31199143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.