BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38332838)

  • 21. Second-order nonlinear optical properties of dithienophenazine and TTF derivatives: A butterfly effect of dimalononitrile substitutions.
    Muhammad S
    J Mol Graph Model; 2015 Jun; 59():14-20. PubMed ID: 25863481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Azo-azulene derivatives as second-order nonlinear optical chromophores.
    Lacroix PG; Malfant I; Iftime G; Razus AC; Nakatani K; Delaire JA
    Chemistry; 2000 Jul; 6(14):2599-608. PubMed ID: 10961405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical investigation on electronic structure and second-order nonlinear optical properties of novel hexamolybdate-organoimido-(car)borane hybrid.
    Ma N; Yan L; Guan W; Qiu Y; Su Z
    Phys Chem Chem Phys; 2012 Apr; 14(16):5605-12. PubMed ID: 22430546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A DFT study of the second-order nonlinear optical properties of Ru(II) polypyridine complexes.
    Chen Y; Zhang Y; Shen Y; Zhao Y; Qiu YQ
    Phys Chem Chem Phys; 2022 Aug; 24(30):18217-18226. PubMed ID: 35867024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Endohedral metallofullerene electrides of Ca
    Ahsan A; Khan S; Gilani MA; Ayub K
    RSC Adv; 2021 Jan; 11(3):1569-1580. PubMed ID: 35424084
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First principles study for the key electronic, optical and nonlinear optical properties of novel donor-acceptor chalcones.
    Muhammad S; Al-Sehemi AG; Su Z; Xu H; Irfan A; Chaudhry AR
    J Mol Graph Model; 2017 Mar; 72():58-69. PubMed ID: 28064080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantum chemical framework for tailoring N/B doped phenalene derivatives to achieve high performance nonlinear optical materials.
    urRehman S; Fatima S; Muhammad S; Bibi S; Munawar KS; Al-Sehemi AG; Chaudhry AR; Adnan M
    J Mol Graph Model; 2024 May; 128():108723. PubMed ID: 38340692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. First theoretical probe for efficient enhancement of optical nonlinearity
    Khalid M; Naz S; Mahmood K; Hussain S; Carmo Braga AA; Hussain R; Ragab AH; Al-Mhyawi SR
    RSC Adv; 2022 Oct; 12(48):31192-31204. PubMed ID: 36349029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation of Azulene-Embedded Nanographene: Naphthalene to Azulene Rearrangement During the Scholl Reaction.
    Han Y; Xue Z; Li G; Gu Y; Ni Y; Dong S; Chi C
    Angew Chem Int Ed Engl; 2020 Jun; 59(23):9026-9031. PubMed ID: 32096589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How does hybrid bridging core modification enhance the nonlinear optical properties in donor-π-acceptor configuration? A case study of dinitrophenol derivatives.
    Muhammad S; Irfan A; Shkir M; Chaudhry AR; Kalam A; AlFaify S; Al-Sehemi AG; Al-Salami AE; Yahia IS; Xu HL; Su ZM
    J Comput Chem; 2015 Jan; 36(2):118-28. PubMed ID: 25382405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical Study on the Nonlinear Optical Property of Boron Nitride Nanoclusters Functionalized by Electron Donating and Electron Accepting Groups.
    Sutradhar T; Misra A
    J Phys Chem A; 2021 Apr; 125(12):2436-2445. PubMed ID: 33749280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical study on a novel series of fullerene-containing organometallics Fe(eta5-C55X5)2 (X = CH, N, B) and their large third-order nonlinear optical properties.
    Liu YC; Kan YH; Wu SX; Yang GC; Zhao L; Zhang M; Guan W; Su ZM
    J Phys Chem A; 2008 Sep; 112(35):8086-92. PubMed ID: 18693710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning the push-pull configuration for efficient second-order nonlinear optical properties in some chalcone derivatives.
    Muhammad S; Al-Sehemi AG; Irfan A; Chaudhry AR
    J Mol Graph Model; 2016 Jul; 68():95-105. PubMed ID: 27388121
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of A-D-A-Type Organic Third-Order Nonlinear Optical Materials Based on Benzodithiophene: A DFT Study.
    Gong P; An L; Tong J; Liu X; Liang Z; Li J
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Demonstrating the Potential of Alkali Metal-Doped Cyclic C
    Wajid S; Kosar N; Ullah F; Gilani MA; Ayub K; Muhammad S; Mahmood T
    ACS Omega; 2021 Nov; 6(44):29852-29861. PubMed ID: 34778658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electronic, optical and spectroscopic properties of N-dialkyl-imidazolium hexafluorophosphate (C
    Gautam V; Mishra M; Thapa KB; Kumar J; Singh D; Kumar D
    J Mol Model; 2023 Aug; 29(9):274. PubMed ID: 37548776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploration of Nonlinear Optical Properties for the First Theoretical Framework of Non-Fullerene DTS(FBTTh
    Khan MU; Hussain S; Asghar MA; Munawar KS; Khera RA; Imran M; Ibrahim MM; Hessien MM; Mersal GAM
    ACS Omega; 2022 May; 7(21):18027-18040. PubMed ID: 35664583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deciphering the Role of Alkali Metals (Li, Na, K) Doping for Triggering Nonlinear Optical (NLO) Properties of T-Graphene Quantum Dots: Toward the Development of Giant NLO Response Materials.
    Sarwar S; Yaqoob J; Khan MU; Hussain R; Zulfiqar S; Anwar A; Assiri MA; Imran M; Ibrahim MM; Mersal GAM; Elnaggar AY
    ACS Omega; 2022 Jul; 7(28):24396-24414. PubMed ID: 35874249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Supramolecular step in design of nonlinear optical materials: Effect of π...π stacking aggregation on hyperpolarizability.
    Suponitsky KY; Masunov AE
    J Chem Phys; 2013 Sep; 139(9):094310. PubMed ID: 24028120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of Alkali Metal Doping and BN Substitution on the Second-Order Nonlinear Optical Properties of Graphyne: A Theoretical Perspective.
    Hou N; Fang XH
    Inorg Chem; 2022 Jul; 61(28):10756-10767. PubMed ID: 35794725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.