These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38333584)

  • 21. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis.
    Weng C; Peng X; Han Y
    Biotechnol Biofuels; 2021 Apr; 14(1):84. PubMed ID: 33812391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of Ligninolytic Bacteria and Analysis of Alkali-Lignin Biodegradation Products.
    Xiong YI; Zhao Y; Ni K; Shi Y; Xu Q
    Pol J Microbiol; 2020 Sep; 69(3):339-347. PubMed ID: 33574863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteomics and metabolomics analysis of the lignin degradation mechanism of lignin-degrading fungus
    Zhu X; Zhou Z; Guo G; Li J; Yan H; Li F
    Anal Methods; 2023 Feb; 15(8):1062-1076. PubMed ID: 36723181
    [No Abstract]   [Full Text] [Related]  

  • 24. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization.
    Varman AM; He L; Follenfant R; Wu W; Wemmer S; Wrobel SA; Tang YJ; Singh S
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):E5802-E5811. PubMed ID: 27634497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation of lignin by Bacillus altitudinis SL7 isolated from pulp and paper mill effluent.
    Khan SI; Zarin A; Ahmed S; Hasan F; Belduz AO; Çanakçi S; Khan S; Badshah M; Farman M; Shah AA
    Water Sci Technol; 2022 Jan; 85(1):420-432. PubMed ID: 35050893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of polyhydroxyalkanoate production by co-feeding lignin derivatives with glycerol in Pseudomonas putida KT2440.
    Xu Z; Pan C; Li X; Hao N; Zhang T; Gaffrey MJ; Pu Y; Cort JR; Ragauskas AJ; Qian WJ; Yang B
    Biotechnol Biofuels; 2021 Jan; 14(1):11. PubMed ID: 33413621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Harnessing redox proteomics to study metabolic regulation and stress response in lignin-fed Rhodococci.
    Li X; Gluth A; Feng S; Qian WJ; Yang B
    Biotechnol Biofuels Bioprod; 2023 Nov; 16(1):180. PubMed ID: 37986172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrative Analysis of Selected Metabolites and the Fungal Transcriptome during the Developmental Cycle of Ganoderma lucidum Strain G0119 Correlates Lignocellulose Degradation with Carbohydrate and Triterpenoid Metabolism.
    Zhou S; Zhang X; Ma F; Xie S; Tang C; Tang Q; Zhang J
    Appl Environ Microbiol; 2021 Jun; 87(13):e0053321. PubMed ID: 33893114
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of
    Li X; He Y; Zhang L; Xu Z; Ben H; Gaffrey MJ; Yang Y; Yang S; Yuan JS; Qian WJ; Yang B
    Biotechnol Biofuels; 2019; 12():60. PubMed ID: 30923568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combined Transcriptomic and Metabolomic Analysis Reveals the Role of Phenylpropanoid Biosynthesis Pathway in the Salt Tolerance Process of
    Zhu Y; Wang Q; Wang Y; Xu Y; Li J; Zhao S; Wang D; Ma Z; Yan F; Liu Y
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33673678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Whole-Genome Sequencing Reveals Lignin-Degrading Capacity of a Ligninolytic Bacterium (
    Zhong H; Zhou J; Wang F; Wu W; Abdelrahman M; Li X
    Genes (Basel); 2022 May; 13(5):. PubMed ID: 35627226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrative omics analyses of the ligninolytic Rhodosporidium fluviale LM-2 disclose catabolic pathways for biobased chemical production.
    Vilela N; Tomazetto G; Gonçalves TA; Sodré V; Persinoti GF; Moraes EC; de Oliveira AHC; da Silva SN; Fill TP; Damasio A; Squina FM
    Biotechnol Biofuels Bioprod; 2023 Jan; 16(1):5. PubMed ID: 36624471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation and Characterization of Lignocellulose-Degrading
    Meslé MM; Mueller RC; Peach J; Eilers B; Tripet BP; Bothner B; Copié V; Peyton BM
    Appl Environ Microbiol; 2022 Jan; 88(1):e0095821. PubMed ID: 34669438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic Remodeling during Biofilm Development of Bacillus subtilis.
    Pisithkul T; Schroeder JW; Trujillo EA; Yeesin P; Stevenson DM; Chaiamarit T; Coon JJ; Wang JD; Amador-Noguez D
    mBio; 2019 May; 10(3):. PubMed ID: 31113899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complete genome reveals genetic repertoire and potential metabolic strategies involved in lignin degradation by environmental ligninolytic Klebsiella variicola P1CD1.
    Dos Santos Melo-Nascimento AO; Mota Moitinho Sant Anna B; Gonçalves CC; Santos G; Noronha E; Parachin N; de Abreu Roque MR; Bruce T
    PLoS One; 2020; 15(12):e0243739. PubMed ID: 33351813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extracellular ligninases production and lignin degradation by Paenibacillus polymyxa.
    Edith Ayala-Rodríguez A; Valdés-Rodríguez S; Enrique Olalde-Mathieu V; Arias-Padró M; Reyes-Moreno C; Olalde-Portugal V
    J Gen Appl Microbiol; 2023 Dec; ():. PubMed ID: 38104982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring the compatibility between hydrothermal depolymerization of alkaline lignin from sugarcane bagasse and metabolization of the aromatics by bacteria.
    de Menezes FF; Martim DB; Ling LY; Mulato ATN; Crespim E; de Castro Oliveira JV; Driemeier CE; de Giuseppe PO; de Moraes Rocha GJ
    Int J Biol Macromol; 2022 Dec; 223(Pt A):223-230. PubMed ID: 36336156
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial transformation of lignin: key enzymes and high-value products.
    Gu J; Qiu Q; Yu Y; Sun X; Tian K; Chang M; Wang Y; Zhang F; Huo H
    Biotechnol Biofuels Bioprod; 2024 Jan; 17(1):2. PubMed ID: 38172947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding of bacterial lignin extracellular degradation mechanisms by Pseudomonas putida KT2440 via secretomic analysis.
    Xu Z; Peng B; Kitata RB; Nicora CD; Weitz KK; Pu Y; Shi T; Cort JR; Ragauskas AJ; Yang B
    Biotechnol Biofuels Bioprod; 2022 Oct; 15(1):117. PubMed ID: 36316752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tissue-specific Transcriptome analysis reveals lignocellulose synthesis regulation in elephant grass (Pennisetum purpureum Schum).
    Zhang W; Zhang S; Lu X; Li C; Liu X; Dong G; Xia T
    BMC Plant Biol; 2020 Nov; 20(1):528. PubMed ID: 33213376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.