These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38333584)

  • 41. Understanding of bacterial lignin extracellular degradation mechanisms by Pseudomonas putida KT2440 via secretomic analysis.
    Xu Z; Peng B; Kitata RB; Nicora CD; Weitz KK; Pu Y; Shi T; Cort JR; Ragauskas AJ; Yang B
    Biotechnol Biofuels Bioprod; 2022 Oct; 15(1):117. PubMed ID: 36316752
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tissue-specific Transcriptome analysis reveals lignocellulose synthesis regulation in elephant grass (Pennisetum purpureum Schum).
    Zhang W; Zhang S; Lu X; Li C; Liu X; Dong G; Xia T
    BMC Plant Biol; 2020 Nov; 20(1):528. PubMed ID: 33213376
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct biosynthesis of adipic acid from lignin-derived aromatics using engineered Pseudomonas putida KT2440.
    Niu W; Willett H; Mueller J; He X; Kramer L; Ma B; Guo J
    Metab Eng; 2020 May; 59():151-161. PubMed ID: 32130971
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A key
    Xue L; Zhao Y; Li L; Rao X; Chen X; Ma F; Yu H; Xie S
    Appl Environ Microbiol; 2023 Oct; 89(10):e0052223. PubMed ID: 37800939
    [No Abstract]   [Full Text] [Related]  

  • 46. Biodegradation of kraft-lignin by Bacillus sp. isolated from sludge of pulp and paper mill.
    Raj A; Reddy MM; Chandra R; Purohit HJ; Kapley A
    Biodegradation; 2007 Dec; 18(6):783-92. PubMed ID: 17308883
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Consequences of phosphoenolpyruvate:sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli.
    Meza E; Becker J; Bolivar F; Gosset G; Wittmann C
    Microb Cell Fact; 2012 Sep; 11():127. PubMed ID: 22973998
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Complete genome sequence of Bacillus sp. 275, producing extracellular cellulolytic, xylanolytic and ligninolytic enzymes.
    Gong G; Kim S; Lee SM; Woo HM; Park TH; Um Y
    J Biotechnol; 2017 Jul; 254():59-62. PubMed ID: 28577916
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bacterial conversion routes for lignin valorization.
    Liu H; Liu ZH; Zhang RK; Yuan JS; Li BZ; Yuan YJ
    Biotechnol Adv; 2022 Nov; 60():108000. PubMed ID: 35675848
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assessment of polyethylene degradation by biosurfactant producing ligninolytic bacterium.
    Kavitha R; Bhuvaneswari V
    Biodegradation; 2021 Oct; 32(5):531-549. PubMed ID: 34031794
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lignin catabolic pathways reveal unique characteristics of dye-decolorizing peroxidases in Pseudomonas putida.
    Lin L; Wang X; Cao L; Xu M
    Environ Microbiol; 2019 May; 21(5):1847-1863. PubMed ID: 30882973
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Isolation of bacterial strains able to metabolize lignin and lignin-related compounds.
    Tian JH; Pourcher AM; Peu P
    Lett Appl Microbiol; 2016 Jul; 63(1):30-7. PubMed ID: 27125750
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isolation and characterization of Burkholderia sp. strain CCA53 exhibiting ligninolytic potential.
    Akita H; Kimura Z; Mohd Yusoff MZ; Nakashima N; Hoshino T
    Springerplus; 2016; 5():596. PubMed ID: 27247892
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing.
    Kröber M; Verwaaijen B; Wibberg D; Winkler A; Pühler A; Schlüter A
    J Biotechnol; 2016 Aug; 231():212-223. PubMed ID: 27312701
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Remodeling of Carbon Metabolism during Sulfoglycolysis in Escherichia coli.
    Mui JW; De Souza DP; Saunders EC; McConville MJ; Williams SJ
    Appl Environ Microbiol; 2023 Feb; 89(2):e0201622. PubMed ID: 36728421
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Degradation and Transformation of Lignin by a Fungus
    Li SF; Wang H; Chen JL; Zhu HX; Yao RS; Wu H
    Iran J Biotechnol; 2020 Jul; 18(3):e2461. PubMed ID: 33850944
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comprehensive evaluation and analysis of the salinity stress response mechanisms based on transcriptome and metabolome of Staphylococcus aureus.
    Feng Y; Gu D; Wang Z; Lu C; Fan J; Zhou J; Wang R; Su X
    Arch Microbiol; 2021 Dec; 204(1):28. PubMed ID: 34921629
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identifying ligninolytic bacteria for lignin valorization to bioplastics.
    Xu T; Zong QJ; Liu H; Wang L; Liu ZH; Li BZ; Yuan YJ
    Bioresour Technol; 2022 Aug; 358():127383. PubMed ID: 35644455
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of carbon and nitrogen supplementation on lignin and cellulose decomposition by a Streptomyces.
    Barder MJ; Crawford DL
    Can J Microbiol; 1981 Aug; 27(8):859-63. PubMed ID: 7296418
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification and characterization of lignin depolymerization enzymes in Bacillus subtilis strain S11Y isolated from a tropical environment in Malaysia.
    Riyadi FA; Azman NF; Nadia Md Akhir F; Othman N; Hara H
    J Gen Appl Microbiol; 2024 Mar; 69(5):278-286. PubMed ID: 37612074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.