These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 38333697)

  • 1. Loss of functional
    Iiams SE; Wan G; Zhang J; Lugena AB; Zhang Y; Hayden AN; Merlin C
    iScience; 2024 Feb; 27(2):108980. PubMed ID: 38333697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation.
    Zhu H; Sauman I; Yuan Q; Casselman A; Emery-Le M; Emery P; Reppert SM
    PLoS Biol; 2008 Jan; 6(1):e4. PubMed ID: 18184036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks.
    Ivanchenko M; Stanewsky R; Giebultowicz JM
    J Biol Rhythms; 2001 Jun; 16(3):205-15. PubMed ID: 11407780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and function of flavin anion radical in cryptochrome 1 blue-light photoreceptor of monarch butterfly.
    Song SH; Oztürk N; Denaro TR; Arat NO; Kao YT; Zhu H; Zhong D; Reppert SM; Sancar A
    J Biol Chem; 2007 Jun; 282(24):17608-12. PubMed ID: 17459876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ancestral circadian clock of monarch butterflies: role in time-compensated sun compass orientation.
    Reppert SM
    Cold Spring Harb Symp Quant Biol; 2007; 72():113-8. PubMed ID: 18419268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide discovery of the daily transcriptome, DNA regulatory elements and transcription factor occupancy in the monarch butterfly brain.
    Lugena AB; Zhang Y; Menet JS; Merlin C
    PLoS Genet; 2019 Jul; 15(7):e1008265. PubMed ID: 31335862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian synchronization and rhythmicity in larval photoperception-defective mutants of Drosophila.
    Malpel S; Klarsfeld A; Rouyer F
    J Biol Rhythms; 2004 Feb; 19(1):10-21. PubMed ID: 14964700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly.
    Iiams SE; Lugena AB; Zhang Y; Hayden AN; Merlin C
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25214-25221. PubMed ID: 31767753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian light-input pathways in Drosophila.
    Yoshii T; Hermann-Luibl C; Helfrich-Förster C
    Commun Integr Biol; 2016; 9(1):e1102805. PubMed ID: 27066180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fly's eye view of circadian entrainment.
    Ashmore LJ; Sehgal A
    J Biol Rhythms; 2003 Jun; 18(3):206-16. PubMed ID: 12828278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetics and molecular biology of rhythms in Drosophila and other insects.
    Hall JC
    Adv Genet; 2003; 48():1-280. PubMed ID: 12593455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of combining a cryptochrome mutation with other visual-system variants on entrainment of locomotor and adult-emergence rhythms in Drosophila.
    Mealey-Ferrara ML; Montalvo AG; Hall JC
    J Neurogenet; 2003; 17(2-3):171-221. PubMed ID: 14668199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Illuminating the circadian clock in monarch butterfly migration.
    Froy O; Gotter AL; Casselman AL; Reppert SM
    Science; 2003 May; 300(5623):1303-5. PubMed ID: 12764200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connecting the navigational clock to sun compass input in monarch butterfly brain.
    Sauman I; Briscoe AD; Zhu H; Shi D; Froy O; Stalleicken J; Yuan Q; Casselman A; Reppert SM
    Neuron; 2005 May; 46(3):457-67. PubMed ID: 15882645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory conflict disrupts circadian rhythms in the sea anemone
    Berger CA; Tarrant AM
    Elife; 2023 Apr; 12():. PubMed ID: 37022138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light Dominates Peripheral Circadian Oscillations in Drosophila melanogaster During Sensory Conflict.
    Harper REF; Ogueta M; Dayan P; Stanewsky R; Albert JT
    J Biol Rhythms; 2017 Oct; 32(5):423-432. PubMed ID: 28903626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light input pathways to the circadian clock of insects with an emphasis on the fruit fly Drosophila melanogaster.
    Helfrich-Förster C
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 Mar; 206(2):259-272. PubMed ID: 31691095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryptochrome-dependent and -independent circadian entrainment circuits in Drosophila.
    Yoshii T; Hermann-Luibl C; Kistenpfennig C; Schmid B; Tomioka K; Helfrich-Förster C
    J Neurosci; 2015 Apr; 35(15):6131-41. PubMed ID: 25878285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of Cryptochrome partially restores circadian rhythmicity to the arrhythmic period mutant of Drosophila.
    Collins BH; Dissel S; Gaten E; Rosato E; Kyriacou CP
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19021-6. PubMed ID: 16361445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of activity rhythms to temperature cues evolve in
    Abhilash L; Kalliyil A; Sheeba V
    J Exp Biol; 2020 Jun; 223(Pt 11):. PubMed ID: 32291322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.