These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38333697)

  • 21. Responses of activity rhythms to temperature cues evolve in
    Abhilash L; Kalliyil A; Sheeba V
    J Exp Biol; 2020 Jun; 223(Pt 11):. PubMed ID: 32291322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Entrainment of the Drosophila circadian clock: more heat than light.
    Fan JY; Muskus MJ; Price JL
    Sci STKE; 2007 Nov; 2007(413):pe65. PubMed ID: 18029913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discordant timing between antennae disrupts sun compass orientation in migratory monarch butterflies.
    Guerra PA; Merlin C; Gegear RJ; Reppert SM
    Nat Commun; 2012 Jul; 3():958. PubMed ID: 22805565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cryptochrome restores dampened circadian rhythms and promotes healthspan in aging Drosophila.
    Rakshit K; Giebultowicz JM
    Aging Cell; 2013 Oct; 12(5):752-62. PubMed ID: 23692507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light.
    Saint-Charles A; Michard-Vanhée C; Alejevski F; Chélot E; Boivin A; Rouyer F
    J Comp Neurol; 2016 Oct; 524(14):2828-44. PubMed ID: 26972685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparing Behavior and Clock Gene Expression between Caterpillars, Butterflies, and Moths.
    Niepoth N; Ke G; de Roode JC; Groot AT
    J Biol Rhythms; 2018 Feb; 33(1):52-64. PubMed ID: 29277154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Neural Network Underlying Circadian Entrainment and Photoperiodic Adjustment of Sleep and Activity in Drosophila.
    Schlichting M; Menegazzi P; Lelito KR; Yao Z; Buhl E; Dalla Benetta E; Bahle A; Denike J; Hodge JJ; Helfrich-Förster C; Shafer OT
    J Neurosci; 2016 Aug; 36(35):9084-96. PubMed ID: 27581451
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peripheral circadian clock for the cuticle deposition rhythm in Drosophila melanogaster.
    Ito C; Goto SG; Shiga S; Tomioka K; Numata H
    Proc Natl Acad Sci U S A; 2008 Jun; 105(24):8446-51. PubMed ID: 18539772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integration of light and temperature in the regulation of circadian gene expression in Drosophila.
    Boothroyd CE; Wijnen H; Naef F; Saez L; Young MW
    PLoS Genet; 2007 Apr; 3(4):e54. PubMed ID: 17411344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light Sampling via Throttled Visual Phototransduction Robustly Synchronizes the Drosophila Circadian Clock.
    Ogueta M; Hardie RC; Stanewsky R
    Curr Biol; 2020 Jul; 30(13):2551-2563.e3. PubMed ID: 32502413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergic entrainment of Drosophila's circadian clock by light and temperature.
    Yoshii T; Vanin S; Costa R; Helfrich-Förster C
    J Biol Rhythms; 2009 Dec; 24(6):452-64. PubMed ID: 19926805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light triggers a network switch between circadian morning and evening oscillators controlling behaviour during daily temperature cycles.
    Lorber C; Leleux S; Stanewsky R; Lamaze A
    PLoS Genet; 2022 Nov; 18(11):e1010487. PubMed ID: 36367867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new role for cryptochrome in a Drosophila circadian oscillator.
    Krishnan B; Levine JD; Lynch MK; Dowse HB; Funes P; Hall JC; Hardin PE; Dryer SE
    Nature; 2001 May; 411(6835):313-7. PubMed ID: 11357134
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cryptochrome-positive and -negative clock neurons in Drosophila entrain differentially to light and temperature.
    Yoshii T; Hermann C; Helfrich-Förster C
    J Biol Rhythms; 2010 Dec; 25(6):387-98. PubMed ID: 21135155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases.
    Merlin C; Beaver LE; Taylor OR; Wolfe SA; Reppert SM
    Genome Res; 2013 Jan; 23(1):159-68. PubMed ID: 23009861
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chasing migration genes: a brain expressed sequence tag resource for summer and migratory monarch butterflies (Danaus plexippus).
    Zhu H; Casselman A; Reppert SM
    PLoS One; 2008 Jan; 3(1):e1345. PubMed ID: 18183285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of photic entrainment of activity/rest rhythms in populations of
    Abhilash L; Sharma VK
    Chronobiol Int; 2020 Apr; 37(4):469-484. PubMed ID: 32079418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genomic identification of a putative circadian system in the cladoceran crustacean Daphnia pulex.
    Tilden AR; McCoole MD; Harmon SM; Baer KN; Christie AE
    Comp Biochem Physiol Part D Genomics Proteomics; 2011 Sep; 6(3):282-309. PubMed ID: 21798832
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural Network Interactions Modulate CRY-Dependent Photoresponses in
    Lamba P; Foley LE; Emery P
    J Neurosci; 2018 Jul; 38(27):6161-6171. PubMed ID: 29875268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neurobiology of Monarch Butterfly Migration.
    Reppert SM; Guerra PA; Merlin C
    Annu Rev Entomol; 2016; 61():25-42. PubMed ID: 26473314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.