These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 383339)

  • 1. The bone inductive capacity of various bone transplanting materials used for treatment of experimental bone defects.
    Oikarinen J; Korhonen LK
    Clin Orthop Relat Res; 1979 May; (140):208-15. PubMed ID: 383339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental spinal fusion with decalcified bone matrix and deep-frozen allogeneic bone in rabbits.
    Oikarinen J
    Clin Orthop Relat Res; 1982; (162):210-8. PubMed ID: 7039912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repair of bone defects by bone inductive material.
    Oikarinen J; Korhonen LK
    Acta Orthop Scand; 1979 Feb; 50(1):21-6. PubMed ID: 371330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone matrix and marrow versus cancellous bone in rabbit radial defects.
    Aspenberg P; Wittbjer J; Thorngren KG
    Arch Orthop Trauma Surg (1978); 1987; 106(6):335-40. PubMed ID: 3324990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autogenous bone marrow and allograft replacement of bone defects in the hand and upper extremities.
    Seitz WH; Froimson AI; Leb RB
    J Orthop Trauma; 1992; 6(1):36-42. PubMed ID: 1556622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of the mechanical strength of long bone defects treated with various bone autograft substitutes: an experimental investigation in the rabbit.
    Hopp SG; Dahners LE; Gilbert JA
    J Orthop Res; 1989; 7(4):579-84. PubMed ID: 2544712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of bone graft materials. Part I. New bone formation with autografts and allografts determined by Strontium-85.
    Mellonig JT; Bowers GM; Bailey RC
    J Periodontol; 1981 Jun; 52(6):291-6. PubMed ID: 7021791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of platelet-rich plasma on early and late bone healing using a mixture of particulate autogenous cancellous bone and Bio-Oss: an experimental study in goats.
    Mooren RE; Dankers AC; Merkx MA; Bronkhorst EM; Jansen JA; Stoelinga PJ
    Int J Oral Maxillofac Surg; 2010 Apr; 39(4):371-8. PubMed ID: 20129756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural identification of cells involved in the healing of intramembranous bone grafts in both the presence and absence of demineralised intramembranous bone matrix.
    Chay SH; Rabie AB; Itthagarun A
    Aust Orthod J; 2000 Jul; 16(2):88-97. PubMed ID: 11201969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Treatment of traumatic bone defect with graft material of allogenic cancellous combined with autologous red marrow].
    Kong Z; Tian D; Yu H; Feng W; Liu C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Oct; 22(10):1251-4. PubMed ID: 18979889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteogenesis after bone and bone marrow transplantation. II. The initial cellular events following transplantation of decalcified allografts of cancellous bone.
    Nade S
    Acta Orthop Scand; 1977; 48(6):572-9. PubMed ID: 343478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fresh autogeneic, frozen allogeneic, and decalcified allogeneic bone grafts in dogs.
    Schwarz N; Schlag G; Thurnher M; Eschberger J; Dinges HP; Redl H
    J Bone Joint Surg Br; 1991 Sep; 73(5):787-90. PubMed ID: 1894667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the efficiency of bone induction by decalcified bone matrix in the mouse and rabbit.
    Wlodarski K; Ptasińska-Urbańska M; Moskalewski S; Jedrasiewicz B
    Folia Biol (Krakow); 1974; 22(4):377-83. PubMed ID: 4611809
    [No Abstract]   [Full Text] [Related]  

  • 14. Osteoinductivity of partially decalcified alloimplants in healing of large osteoperiosteal defects.
    Gupta D; Tuli SM
    Acta Orthop Scand; 1982 Dec; 53(6):857-65. PubMed ID: 6758473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The osteoninductive property of decalcified bone matrix. An experimental study,
    Tuli SM; Singh AD
    J Bone Joint Surg Br; 1978 Feb; 60(1):116-23. PubMed ID: 342532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free physeal transplantation in the rabbit. An experimental approach to focal lesions.
    Olin A; Creasman C; Shapiro F
    J Bone Joint Surg Am; 1984 Jan; 66(1):7-20. PubMed ID: 6418748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repair of bone defects with absorbable membranes. A study on rabbits.
    Ashammakhi N; Mäkelä EA; Vihtonen K; Rokkanen P; Törmälä P
    Ann Chir Gynaecol; 1995; 84(3):309-15. PubMed ID: 8702207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of decalcified granulated homologous cortical bone matrix in the correction of diaphyseal bone defect. An experimental study in rabbits.
    Volpon JB; Xavier CA; Conçalves RP
    Arch Orthop Trauma Surg (1978); 1982; 99(3):199-207. PubMed ID: 7041849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of autoclaved autogeneic bone supplemented with allogeneic demineralized bone matrix. An experimental study in the rabbit.
    Köhler P; Kreicbergs A
    Clin Orthop Relat Res; 1987 May; (218):247-58. PubMed ID: 3552355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.