These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38333960)

  • 1. Solutal Marangoni force controls lateral motion of electrolytic gas bubbles.
    Zhang H; Ma Y; Huang M; Mutschke G; Zhang X
    Soft Matter; 2024 Apr; 20(14):3097-3106. PubMed ID: 38333960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marangoni convection at electrogenerated hydrogen bubbles.
    Yang X; Baczyzmalski D; Cierpka C; Mutschke G; Eckert K
    Phys Chem Chem Phys; 2018 May; 20(17):11542-11548. PubMed ID: 29651493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solutal Marangoni effect determines bubble dynamics during electrocatalytic hydrogen evolution.
    Park S; Liu L; Demirkır Ç; van der Heijden O; Lohse D; Krug D; Koper MTM
    Nat Chem; 2023 Nov; 15(11):1532-1540. PubMed ID: 37563325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review-Physicochemical hydrodynamics of gas bubbles in two phase electrochemical systems.
    Taqieddin A; Nazari R; Rajic L; Alshawabkeh A
    J Electrochem Soc; 2017; 164(13):E448-E459. PubMed ID: 29731515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal Marangoni forces.
    Zeng B; Chong KL; Wang Y; Diddens C; Li X; Detert M; Zandvliet HJW; Lohse D
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34088844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance Enhancement of Electrocatalytic Hydrogen Evolution through Coalescence-Induced Bubble Dynamics.
    Bashkatov A; Park S; Demirkır Ç; Wood JA; Koper MTM; Lohse D; Krug D
    J Am Chem Soc; 2024 Apr; 146(14):10177-10186. PubMed ID: 38538570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Entity Electrochemistry of Nano- and Microbubbles in Electrolytic Gas Evolution.
    Chen Q; Zhao J; Deng X; Shan Y; Peng Y
    J Phys Chem Lett; 2022 Jul; 13(26):6153-6163. PubMed ID: 35762985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic behavior of bubbles at gas-evolving electrode in ultrasonic field during water electrolysis.
    Cho KM; Deshmukh PR; Shin WG
    Ultrason Sonochem; 2021 Dec; 80():105796. PubMed ID: 34678597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition in the growth mode of plasmonic bubbles in binary liquids.
    Detert M; Chen Y; Zandvliet HJW; Lohse D
    Soft Matter; 2022 Jun; 18(21):4136-4145. PubMed ID: 35583141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Equilibrium Model for Surface Nanobubbles in Electrochemistry.
    Ma Y; Guo Z; Chen Q; Zhang X
    Langmuir; 2021 Mar; 37(8):2771-2779. PubMed ID: 33576638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of subatmospheric pressure on bubble evolution on the TiO
    Luo X; Xu Q; Nie T; She Y; Ye X; Guo L
    Phys Chem Chem Phys; 2023 Jun; 25(23):16086-16104. PubMed ID: 37278317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined experimental and theoretical investigation of the gas bubble motion in an acoustic field.
    Ma X; Xing T; Huang B; Li Q; Yang Y
    Ultrason Sonochem; 2018 Jan; 40(Pt A):480-487. PubMed ID: 28946449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equation of state for He bubbles in W and model of He bubble growth and bursting near W{100} surfaces derived from molecular dynamics simulations.
    Setyawan W; Dasgupta D; Blondel S; Nandipati G; Hammond KD; Maroudas D; Wirth BD
    Sci Rep; 2023 Jun; 13(1):9601. PubMed ID: 37311783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrolysis-Driven and Pressure-Controlled Diffusive Growth of Successive Bubbles on Microstructured Surfaces.
    van der Linde P; Moreno Soto Á; Peñas-López P; Rodríguez-Rodríguez J; Lohse D; Gardeniers H; van der Meer D; Fernández Rivas D
    Langmuir; 2017 Nov; 33(45):12873-12886. PubMed ID: 29041778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas micronuclei that underlie decompression bubbles and decompression sickness have not been identified.
    Doolette DJ
    Diving Hyperb Med; 2019 Mar; 49(1):64. PubMed ID: 30856670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circular motion of submillimeter-sized acoustic bubbles attached to a boundary by high-speed image analysis.
    Bai L; Sun J; Gao Y; Xu W; Zeng Z; Ma Y; Bai L
    Ultrason Sonochem; 2021 Jun; 74():105577. PubMed ID: 33946012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemistry of single nanobubbles. Estimating the critical size of bubble-forming nuclei for gas-evolving electrode reactions.
    German SR; Edwards MA; Chen Q; Liu Y; Luo L; White HS
    Faraday Discuss; 2016 Dec; 193():223-240. PubMed ID: 27722703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding of Dynamic Contacting Behaviors of Underwater Gas Bubbles on Solid Surfaces.
    Qin J; Zhou D; Shi B; Chen F; Luo L; Kumar A; Wang C; Lin X; Sheng S; Xu W; Shang Z; Cheng C; Kuang Y; Lin WF; Xu H; Sun X
    Langmuir; 2020 Oct; 36(39):11422-11428. PubMed ID: 32862650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism.
    Miniewicz A; Quintard C; Orlikowska H; Bartkiewicz S
    Phys Chem Chem Phys; 2017 Jul; 19(28):18695-18703. PubMed ID: 28696476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Soluble Surfactants and Deformation on the Dynamics of Centered Bubbles in Cylindrical Microchannels.
    Atasi O; Haut B; Pedrono A; Scheid B; Legendre D
    Langmuir; 2018 Aug; 34(34):10048-10062. PubMed ID: 30040422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.