BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38334235)

  • 1. Advancing Glucose Sensing Through Auto-Fluorescent Polymer Brushes: From Surface Design to Nano-Arrays.
    Aktas Eken G; Huang Y; Prucker O; Rühe J; Ober C
    Small; 2024 May; 20(22):e2309040. PubMed ID: 38334235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose monitoring using a polymer brush modified polypropylene hollow fiber-based hydraulic flow sensor.
    Fortin N; Klok HA
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4631-40. PubMed ID: 25675859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose-sensitive QCM-sensors via direct surface RAFT polymerization.
    Sugnaux C; Klok HA
    Macromol Rapid Commun; 2014 Aug; 35(16):1402-7. PubMed ID: 24943242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responsive Polymer Brush Design and Emerging Applications for Nanotheranostics.
    Li D; Xu L; Wang J; Gautrot JE
    Adv Healthc Mater; 2021 Mar; 10(5):e2000953. PubMed ID: 32893474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanopatterned polymer brushes: conformation, fabrication and applications.
    Yu Q; Ista LK; Gu R; Zauscher S; López GP
    Nanoscale; 2016 Jan; 8(2):680-700. PubMed ID: 26648412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer brushes: routes toward mechanosensitive surfaces.
    Bünsow J; Kelby TS; Huck WT
    Acc Chem Res; 2010 Mar; 43(3):466-74. PubMed ID: 20038136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boronic acid-functionalized spherical polymer brushes for efficient and selective enrichment of glycoproteins.
    Hua C; Chen K; Guo X
    J Mater Chem B; 2021 Sep; 9(36):7557-7565. PubMed ID: 34551054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent boronic acid polymer grafted on silica particles for affinity separation of saccharides.
    Xu Z; Uddin KM; Kamra T; Schnadt J; Ye L
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1406-14. PubMed ID: 24444898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate-Independent Micropatterning of Polymer Brushes Based on Photolytic Deactivation of Chemical Vapor Deposition Based Surface-Initiated Atom-Transfer Radical Polymerization Initiator Films.
    Kumar R; Welle A; Becker F; Kopyeva I; Lahann J
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):31965-31976. PubMed ID: 30180547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zwitterionic poly(amino acid methacrylate) brushes.
    Alswieleh AM; Cheng N; Canton I; Ustbas B; Xue X; Ladmiral V; Xia S; Ducker RE; El Zubir O; Cartron ML; Hunter CN; Leggett GJ; Armes SP
    J Am Chem Soc; 2014 Jul; 136(26):9404-13. PubMed ID: 24884533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of boronate-containing polymer brushes and gels as substrates for carbohydrate-mediated adhesion and cultivation of animal cells.
    Ivanov AE; Kumar A; Nilsang S; Aguilar MR; Mikhalovska LI; Savina IN; Nilsson L; Scheblykin IG; Kuzimenkova MV; Galaev IY
    Colloids Surf B Biointerfaces; 2010 Feb; 75(2):510-9. PubMed ID: 19837569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties.
    Yang J; Chen H; Xiao S; Shen M; Chen F; Fan P; Zhong M; Zheng J
    Langmuir; 2015 Aug; 31(33):9125-33. PubMed ID: 26245712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanopatterned Monolayers of Bioinspired, Sequence-Defined Polypeptoid Brushes for Semiconductor/Bio Interfaces.
    Yu B; Chang BS; Loo WS; Dhuey S; O'Reilly P; Ashby PD; Connolly MD; Tikhomirov G; Zuckermann RN; Ruiz R
    ACS Nano; 2024 Mar; 18(10):7411-7423. PubMed ID: 38412617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanofluorescent Polymer Brush Surfaces that Spatially Resolve Surface Solvation.
    Besford QA; Merlitz H; Schubotz S; Yong H; Chae S; Schnepf MJ; Weiss ACG; Auernhammer GK; Sommer JU; Uhlmann P; Fery A
    ACS Nano; 2022 Feb; 16(2):3383-3393. PubMed ID: 35112848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells.
    Liu H; Li Y; Sun K; Fan J; Zhang P; Meng J; Wang S; Jiang L
    J Am Chem Soc; 2013 May; 135(20):7603-9. PubMed ID: 23601154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensing capabilities of colloidal gold monolayer modified with a phenylboronic acid-carrying polymer brush.
    Kitano H; Anraku Y; Shinohara H
    Biomacromolecules; 2006 Apr; 7(4):1065-71. PubMed ID: 16602722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-responsive biocompatible fluorescent polymer nanoparticles based on phenylboronic acid for intracellular imaging and drug delivery.
    Li S; Hu K; Cao W; Sun Y; Sheng W; Li F; Wu Y; Liang XJ
    Nanoscale; 2014 Nov; 6(22):13701-9. PubMed ID: 25278283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct patterning of intrinsically electron beam sensitive polymer brushes.
    Rastogi A; Paik MY; Tanaka M; Ober CK
    ACS Nano; 2010 Feb; 4(2):771-80. PubMed ID: 20121228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FRET-Integrated Polymer Brushes for Spatially Resolved Sensing of Changes in Polymer Conformation.
    Besford QA; Yong H; Merlitz H; Christofferson AJ; Sommer JU; Uhlmann P; Fery A
    Angew Chem Int Ed Engl; 2021 Jul; 60(30):16600-16606. PubMed ID: 33979032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible Protein Adsorption on Mixed PEO/PAA Polymer Brushes: Role of Ionic Strength and PEO Content.
    Bratek-Skicki A; Eloy P; Morga M; Dupont-Gillain C
    Langmuir; 2018 Mar; 34(9):3037-3048. PubMed ID: 29406751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.