BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38334312)

  • 1. Continuous Monitoring Biosensing Mediated by Single-Molecule Plasmon-Enhanced Fluorescence in Complex Matrices.
    Lamberti V; Dolci M; Zijlstra P
    ACS Nano; 2024 Feb; 18(7):5805-13. PubMed ID: 38334312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous biomarker monitoring with single molecule resolution by measuring free particle motion.
    Buskermolen AD; Lin YT; van Smeden L; van Haaften RB; Yan J; Sergelen K; de Jong AM; Prins MWJ
    Nat Commun; 2022 Oct; 13(1):6052. PubMed ID: 36229441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Molecule Plasmon Sensing: Current Status and Future Prospects.
    Taylor AB; Zijlstra P
    ACS Sens; 2017 Aug; 2(8):1103-1122. PubMed ID: 28762723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards continuous monitoring of TNF-α at picomolar concentrations using biosensing by particle motion.
    Buskermolen AD; Michielsen CMS; de Jong AM; Prins MWJ
    Biosens Bioelectron; 2024 Apr; 249():115934. PubMed ID: 38215637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Single-Molecule Sensors: How Can the Signals Be Analyzed in Real Time for Achieving Real-Time Continuous Biosensing?
    Bergkamp MH; Cajigas S; van IJzendoorn LJ; Prins MWJ
    ACS Sens; 2023 Jun; 8(6):2271-2281. PubMed ID: 37216442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes.
    Sage AT; Besant JD; Lam B; Sargent EH; Kelley SO
    Acc Chem Res; 2014 Aug; 47(8):2417-25. PubMed ID: 24961296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Avidity-Based Affinity Enhancement Using Nanoliposome-Amplified SPR Sensing Enables Low Picomolar Detection of Biologically Active Neuregulin 1.
    Akkilic N; Liljeblad M; Blaho S; Hölttä M; Höök F; Geschwindner S
    ACS Sens; 2019 Dec; 4(12):3166-3174. PubMed ID: 31724395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-modulated fluorescence nanoprobes for enzyme-free DNA detection via target signal enhancement and off-target quenching.
    Choi S; Nam YS
    Biosens Bioelectron; 2022 Aug; 210():114288. PubMed ID: 35460968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene oxide and gold nanoparticle based dual platform with short DNA probe for the PCR free DNA biosensing using surface-enhanced Raman scattering.
    Khalil I; Yehye WA; Julkapli NM; Rahmati S; Sina AA; Basirun WJ; Johan MR
    Biosens Bioelectron; 2019 Apr; 131():214-223. PubMed ID: 30844598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis Methods and Optical Sensing Applications of Plasmonic Metal Nanoparticles Made from Rhodium, Platinum, Gold, or Silver.
    Demishkevich E; Zyubin A; Seteikin A; Samusev I; Park I; Hwangbo CK; Choi EH; Lee GJ
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual platform based sandwich assay surface-enhanced Raman scattering DNA biosensor for the sensitive detection of food adulteration.
    Khalil I; Yehye WA; Muhd Julkapli N; Sina AA; Rahmati S; Basirun WJ; Seyfoddin A
    Analyst; 2020 Feb; 145(4):1414-1426. PubMed ID: 31845928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A surface plasmon field-enhanced fluorescence reversible split aptamer biosensor.
    Sergelen K; Liedberg B; Knoll W; Dostálek J
    Analyst; 2017 Aug; 142(16):2995-3001. PubMed ID: 28744534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Click-Coupling to Electrostatically Grafted Polymers Greatly Improves the Stability of a Continuous Monitoring Sensor with Single-Molecule Resolution.
    Lin YT; Vermaas R; Yan J; de Jong AM; Prins MWJ
    ACS Sens; 2021 May; 6(5):1980-1986. PubMed ID: 33985333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous Small-Molecule Monitoring with a Digital Single-Particle Switch.
    Yan J; van Smeden L; Merkx M; Zijlstra P; Prins MWJ
    ACS Sens; 2020 Apr; 5(4):1168-1176. PubMed ID: 32189498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Molecule Optical Biosensing: Recent Advances and Future Challenges.
    Dey S; Dolci M; Zijlstra P
    ACS Phys Chem Au; 2023 Mar; 3(2):143-156. PubMed ID: 36968450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays.
    Chen P; Chung MT; McHugh W; Nidetz R; Li Y; Fu J; Cornell TT; Shanley TP; Kurabayashi K
    ACS Nano; 2015; 9(4):4173-81. PubMed ID: 25790830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoplasmonic Alloy of Au/Ag Nanocomposites on Paper Substrate for Biosensing Applications.
    Park M; Hwang CSH; Jeong KH
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):290-295. PubMed ID: 29220574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A portable surface plasmon resonance sensor system for real-time monitoring of small to large analytes.
    Soelberg SD; Chinowsky T; Geiss G; Spinelli CB; Stevens R; Near S; Kauffman P; Yee S; Furlong CE
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):669-74. PubMed ID: 16283397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rolling Circle Amplification Tailored for Plasmonic Biosensors: From Ensemble to Single-Molecule Detection.
    Schmidt K; Hageneder S; Lechner B; Zbiral B; Fossati S; Ahmadi Y; Minunni M; Toca-Herrera JL; Reimhult E; Barisic I; Dostalek J
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):55017-55027. PubMed ID: 36446038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug-Based Gold Nanoparticles Overgrowth for Enhanced SPR Biosensing of Doxycycline.
    Kazmi SAR; Qureshi MZ; Masson JF
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33228248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.