These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38334459)

  • 1. Oxovanadium electronics for in-memory, neuromorphic, and quantum computing applications.
    Monakhov KY
    Mater Horiz; 2024 Apr; 11(8):1838-1842. PubMed ID: 38334459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing.
    Choi S; Yang J; Wang G
    Adv Mater; 2020 Dec; 32(51):e2004659. PubMed ID: 33006204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Issues of nanoelectronics: a possible roadmap.
    Wang KL
    J Nanosci Nanotechnol; 2002; 2(3-4):235-66. PubMed ID: 12908252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Approach to the Fabrication of Memristive Neuromorphic Devices: Compositionally Graded Films.
    Yoon JG
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32825397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in In-Memory Computing: Exploring Memristor and Memtransistor Arrays with 2D Materials.
    Zhou H; Li S; Ang KW; Zhang YW
    Nanomicro Lett; 2024 Feb; 16(1):121. PubMed ID: 38372805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unsupervised Hebbian learning experimentally realized with analogue memristive crossbar arrays.
    Hansen M; Zahari F; Kohlstedt H; Ziegler M
    Sci Rep; 2018 Jun; 8(1):8914. PubMed ID: 29892090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Memristive Devices Based on Two-Dimensional Transition Metal Chalcogenides for Neuromorphic Computing.
    Kwon KC; Baek JH; Hong K; Kim SY; Jang HW
    Nanomicro Lett; 2022 Feb; 14(1):58. PubMed ID: 35122527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimuli-Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing.
    Bian H; Goh YY; Liu Y; Ling H; Xie L; Liu X
    Adv Mater; 2021 Nov; 33(46):e2006469. PubMed ID: 33837601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network.
    Seok H; Son S; Jathar SB; Lee J; Kim T
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety.
    Atzori M; Morra E; Tesi L; Albino A; Chiesa M; Sorace L; Sessoli R
    J Am Chem Soc; 2016 Sep; 138(35):11234-44. PubMed ID: 27517709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Conductance in Memristive Devices: Fundamentals, Developments, and Applications.
    Milano G; Aono M; Boarino L; Celano U; Hasegawa T; Kozicki M; Majumdar S; Menghini M; Miranda E; Ricciardi C; Tappertzhofen S; Terabe K; Valov I
    Adv Mater; 2022 Aug; 34(32):e2201248. PubMed ID: 35404522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromorphic nanoelectronic materials.
    Sangwan VK; Hersam MC
    Nat Nanotechnol; 2020 Jul; 15(7):517-528. PubMed ID: 32123381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reservoir Computing with Charge-Trap Memory Based on a MoS
    Farronato M; Mannocci P; Melegari M; Ricci S; Compagnoni CM; Ielmini D
    Adv Mater; 2023 Sep; 35(37):e2205381. PubMed ID: 36222391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence.
    Wang J; Zhuge X; Zhuge F
    Sci Technol Adv Mater; 2021 May; 22(1):326-344. PubMed ID: 34025215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Memristive and CMOS Devices for Neuromorphic Computing.
    Milo V; Malavena G; Monzio Compagnoni C; Ielmini D
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistive random access memory: introduction to device mechanism, materials and application to neuromorphic computing.
    Zahoor F; Hussin FA; Isyaku UB; Gupta S; Khanday FA; Chattopadhyay A; Abbas H
    Discov Nano; 2023 Mar; 18(1):36. PubMed ID: 37382679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Memristive Artificial Synapses for Neuromorphic Computing.
    Huang W; Xia X; Zhu C; Steichen P; Quan W; Mao W; Yang J; Chu L; Li X
    Nanomicro Lett; 2021 Mar; 13(1):85. PubMed ID: 34138298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compact modeling of CRS devices based on ECM cells for memory, logic and neuromorphic applications.
    Linn E; Menzel S; Ferch S; Waser R
    Nanotechnology; 2013 Sep; 24(38):384008. PubMed ID: 23999250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semiconductor Quantum Dots for Memories and Neuromorphic Computing Systems.
    Lv Z; Wang Y; Chen J; Wang J; Zhou Y; Han ST
    Chem Rev; 2020 May; 120(9):3941-4006. PubMed ID: 32202419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circuit-Level Memory Technologies and Applications based on 2D Materials.
    Ma J; Liu H; Yang N; Zou J; Lin S; Zhang Y; Zhang X; Guo J; Wang H
    Adv Mater; 2022 Dec; 34(48):e2202371. PubMed ID: 35607274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.