These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38334510)

  • 1. The Recent Progresses of Electrodes and Electrolysers for Seawater Electrolysis.
    Zhang F; Zhou J; Chen X; Zhao S; Zhao Y; Tang Y; Tian Z; Yang Q; Slavcheva E; Lin Y; Zhang Q
    Nanomaterials (Basel); 2024 Jan; 14(3):. PubMed ID: 38334510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Materials Design and System Innovation for Direct and Indirect Seawater Electrolysis.
    He W; Li X; Tang C; Zhou S; Lu X; Li W; Li X; Zeng X; Dong P; Zhang Y; Zhang Q
    ACS Nano; 2023 Nov; 17(22):22227-22239. PubMed ID: 37965727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Performance Alkaline Seawater Electrolysis with Anomalous Chloride Promoted Oxygen Evolution Reaction.
    Liu H; Shen W; Jin H; Xu J; Xi P; Dong J; Zheng Y; Qiao SZ
    Angew Chem Int Ed Engl; 2023 Nov; 62(46):e202311674. PubMed ID: 37711095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in direct seawater splitting for producing hydrogen.
    Xu SW; Li J; Zhang N; Shen W; Zheng Y; Xi P
    Chem Commun (Camb); 2023 Aug; 59(65):9792-9802. PubMed ID: 37527284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selectivity of Oxygen Evolution Reaction on Carbon Cloth-Supported δ-MnO
    Yan H; Wang X; Linkov V; Ji S; Wang R
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects.
    Yu ZY; Duan Y; Feng XY; Yu X; Gao MR; Yu SH
    Adv Mater; 2021 Aug; 33(31):e2007100. PubMed ID: 34117808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoengineered, Pd-doped Co@C nanoparticles as an effective electrocatalyst for OER in alkaline seawater electrolysis.
    Ghouri ZK; Hughes DJ; Ahmed K; Elsaid K; Nasef MM; Badreldin A; Abdel-Wahab A
    Sci Rep; 2023 Nov; 13(1):20866. PubMed ID: 38012177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Hybrid Seawater Electrolysis for Hydrogen Production.
    Yu Z; Liu L
    Adv Mater; 2024 Mar; 36(13):e2308647. PubMed ID: 38143285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mott-Schottky heterojunction of Se/NiSe
    Khatun S; Roy P
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):844-854. PubMed ID: 36356450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-Doping and Synergism toward High-Performance Seawater Electrolysis.
    Chang J; Wang G; Yang Z; Li B; Wang Q; Kuliiev R; Orlovskaya N; Gu M; Du Y; Wang G; Yang Y
    Adv Mater; 2021 Aug; 33(33):e2101425. PubMed ID: 34235791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interface engineering of heterogeneous NiMn layered double hydroxide/vertically aligned NiCo
    Gopalakrishnan S; Anandha Babu G; Harish S; Kumar ES; Navaneethan M
    Chemosphere; 2024 Feb; 350():141016. PubMed ID: 38151065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust FeCoP nanoparticles grown on a rGO-coated Ni foam as an efficient oxygen evolution catalyst for excellent alkaline and seawater electrolysis.
    Zheng Y; Yu D; Xu W; Zhang K; Ma K; Guo X; Lou Y; Hu M
    Dalton Trans; 2023 Mar; 52(11):3493-3500. PubMed ID: 36846870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A membrane-based seawater electrolyser for hydrogen generation.
    Xie H; Zhao Z; Liu T; Wu Y; Lan C; Jiang W; Zhu L; Wang Y; Yang D; Shao Z
    Nature; 2022 Dec; 612(7941):673-678. PubMed ID: 36450987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrolyte Engineering for Oxygen Evolution Reaction Over Non-Noble Metal Electrodes Achieving High Current Density in the Presence of Chloride Ion.
    Komiya H; Shinagawa T; Takanabe K
    ChemSusChem; 2022 Oct; 15(19):e202201088. PubMed ID: 35921042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design Strategy of Corrosion-Resistant Electrodes for Seawater Electrolysis.
    Zhao L; Li X; Yu J; Zhou W
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IrO
    Du G; Sun W; Hu Y; Liao J; Tian X; Gao H; Ge C
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61088-61097. PubMed ID: 34911293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Common-Ion Effect Triggered Highly Sustained Seawater Electrolysis with Additional NaCl Production.
    Li P; Wang S; Samo IA; Zhang X; Wang Z; Wang C; Li Y; Du Y; Zhong Y; Cheng C; Xu W; Liu X; Kuang Y; Lu Z; Sun X
    Research (Wash D C); 2020; 2020():2872141. PubMed ID: 33043295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selectively Enhanced Electrocatalytic Oxygen Evolution within Nanoscopic Channels Fitting a Specific Reaction Intermediate for Seawater Splitting.
    Shin S; Wi TU; Kong TH; Park C; Lee H; Jeong J; Lee E; Yoon S; Kim TH; Lee HW; Kwon Y; Song HK
    Small; 2023 Mar; 19(11):e2206918. PubMed ID: 36567426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-entropy NiFeCoV disulfides for enhanced alkaline water/seawater electrolysis.
    Feng C; Chen M; Zhou Y; Xie Z; Li X; Xiaokaiti P; Kansha Y; Abudula A; Guan G
    J Colloid Interface Sci; 2023 Sep; 645():724-734. PubMed ID: 37172482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges towards Economic Fuel Generation from Renewable Electricity: The Need for Efficient Electro-Catalysis.
    Formal FL; Bourée WS; Prévot MS; Sivula K
    Chimia (Aarau); 2015; 69(12):789-798. PubMed ID: 26842332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.