BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38334544)

  • 21. Ultrahigh areal number density solid-state on-chip microsupercapacitors via electrohydrodynamic jet printing.
    Lee KH; Lee SS; Ahn DB; Lee J; Byun D; Lee SY
    Sci Adv; 2020 Mar; 6(10):eaaz1692. PubMed ID: 32181360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation and Printing of Microdroplets Using Straight Electrode-Based Electrohydrodynamic Jet for Flexible Substrate.
    Wang D; Abbas Z; Lu L; Liu C; Zhang J; Pu C; Li Y; Yin P; Zhang X; Liang J
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microtip focused electrohydrodynamic jet printing with nanoscale resolution.
    Su S; Liang J; Wang Z; Xin W; Li X; Wang D
    Nanoscale; 2020 Dec; 12(48):24450-24462. PubMed ID: 33300927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. One-Step Sub-micrometer-Scale Electrohydrodynamic Inkjet Three-Dimensional Printing Technique with Spontaneous Nanoscale Joule Heating.
    Zhang B; Seong B; Lee J; Nguyen V; Cho D; Byun D
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29965-29972. PubMed ID: 28806052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrafast 3D printing with submicrometer features using electrostatic jet deflection.
    Liashenko I; Rosell-Llompart J; Cabot A
    Nat Commun; 2020 Feb; 11(1):753. PubMed ID: 32029714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced solvent resistance and electrical performance of electrohydrodynamic jet printed PEDOT:PSS composite patterns: effects of hardeners on the performance of organic thin-film transistors.
    Tang X; Kwon HJ; Ye H; Kim JY; Lee J; Jeong YJ; Kim SH
    Phys Chem Chem Phys; 2019 Nov; 21(46):25690-25699. PubMed ID: 31742310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Designs and applications of electrohydrodynamic 3D printing.
    Gao D; Zhou JG
    Int J Bioprint; 2019; 5(1):172. PubMed ID: 32782979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulation of Cone-Jet and Micro-Drip Regimes and Printing of Micro-Scale Patterns on PET Substrate.
    Wang D; Abbas Z; Lu L; Liang S; Zhao X; Xu P; Zhao K; Suo L; Cui Y; Yin P; Tang B; Xie J; Yang Y; Liang J
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subtractive Patterning of Nanoscale Thin Films Using Acid-Based Electrohydrodynamic-Jet Printing.
    Cho TH; Farjam N; Barton K; Dasgupta NP
    Small Methods; 2024 May; 8(5):e2301407. PubMed ID: 38161264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.
    Ding H; Zhu C; Tian L; Liu C; Fu G; Shang L; Gu Z
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11933-11941. PubMed ID: 28120613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alignment of One-Dimensional SnO2 Lines by Electrohydrodynamic Jet Printing.
    Choi H; Jung H; Choi DK; Kim CY
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1818-21. PubMed ID: 27433678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oscillation Dynamics of Dielectric Polymer Droplets during Electrohydrodynamic Jetting in a Wide Range of Viscosities.
    Tkachenko V; Coppola S; Vespini V; Tammaro D; Maffettone PL; Ferraro P; Grilli S
    Langmuir; 2023 Dec; 39(50):18403-18409. PubMed ID: 38055972
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrohydrodynamic jet 3D printing in biomedical applications.
    Wu Y
    Acta Biomater; 2021 Jul; 128():21-41. PubMed ID: 33905945
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of Both E-Jet Printing Ejection Cycle Time and Droplet Diameter Based on Random Forest Regression.
    Chen Y; Lao Z; Wang R; Li J; Gai J; You H
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrohydrodynamic jet-printed zinc-tin oxide TFTs and their bias stability.
    Lee YG; Choi WS
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11167-72. PubMed ID: 25000343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Microscale 3D Printing Based on the Electric-Field-Driven Jet.
    Zhang G; Lan H; Qian L; Zhao J; Wang F
    3D Print Addit Manuf; 2020 Feb; 7(1):37-44. PubMed ID: 36654877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast on-off controlling of electrohydrodynamic printing based on AC oscillation induced voltage.
    Chen H; Chen J; Jiang J; Shao Z; Kang G; Wang X; Li W; Liu Y; Zheng G
    Sci Rep; 2023 Mar; 13(1):3790. PubMed ID: 36882512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tip-Viscid Electrohydrodynamic Jet 3D Printing of Composite Osteochondral Scaffold.
    Li K; Wang D; Zhang F; Wang X; Chen H; Yu A; Cui Y; Dong C
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inkjet Printing of a Benzocyclobutene-Based Polymer as a Low-k Material for Electronic Applications.
    Iervolino F; Suriano R; Scolari M; Gelmi I; Castoldi L; Levi M
    ACS Omega; 2021 Jun; 6(24):15892-15902. PubMed ID: 34179633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Situ Fabrication of Polymeric Microcapsules by Ink-Jet Printing of Emulsions.
    Deng R; Wang Y; Yang L; Bain CD
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40652-40661. PubMed ID: 31581770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.