These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 38334548)
1. Highly Efficient Ru-Based Catalysts for Lactic Acid Conversion to Alanine. Podolean I; Dogaru M; Guzo NC; Petcuta OA; Jacobsen EE; Nicolaev A; Cojocaru B; Tudorache M; Parvulescu VI; Coman SM Nanomaterials (Basel); 2024 Jan; 14(3):. PubMed ID: 38334548 [TBL] [Abstract][Full Text] [Related]
2. Efficient conversion of lactic acid to alanine over noble metal supported on Ni@C catalysts. Xin H; Xiu Z; Liu S; Wang H; Wang C; Ma L; Liu Q RSC Adv; 2022 Jun; 12(26):16847-16859. PubMed ID: 35754887 [TBL] [Abstract][Full Text] [Related]
3. Catalytic amination of lactic acid using Ru-zeolites. Shah MA; Khalil I; Tallarico S; Donckels T; Eloy P; Debecker DP; Oliverio M; Dusselier M Dalton Trans; 2022 Jul; 51(28):10773-10778. PubMed ID: 35510805 [TBL] [Abstract][Full Text] [Related]
4. Catalytic amino acid production from biomass-derived intermediates. Deng W; Wang Y; Zhang S; Gupta KM; Hülsey MJ; Asakura H; Liu L; Han Y; Karp EM; Beckham GT; Dyson PJ; Jiang J; Tanaka T; Wang Y; Yan N Proc Natl Acad Sci U S A; 2018 May; 115(20):5093-5098. PubMed ID: 29712826 [TBL] [Abstract][Full Text] [Related]
5. Diethyl Ether Production during Catalytic Dehydration of Ethanol over Ru- and Pt- modified H-beta Zeolite Catalysts. Kamsuwan T; Praserthdam P; Jongsomjit B J Oleo Sci; 2017; 66(2):199-207. PubMed ID: 28154350 [TBL] [Abstract][Full Text] [Related]
6. Electrocatalytic oxidation of ethylene glycol on Pt and Pt-Ru nanoparticles modified multi-walled carbon nanotubes. Selvaraj V; Vinoba M; Alagar M J Colloid Interface Sci; 2008 Jun; 322(2):537-44. PubMed ID: 18402968 [TBL] [Abstract][Full Text] [Related]
7. Efficient Generation of Lactic Acid from Glycerol over a Ru-Zn-Cu Jiang Z; Zhang Z; Wu T; Zhang P; Song J; Xie C; Han B Chem Asian J; 2017 Jul; 12(13):1598-1604. PubMed ID: 28464466 [TBL] [Abstract][Full Text] [Related]
8. Insights into the effect of the catalytic functions on selective production of ethylene glycol from lignocellulosic biomass over carbon supported ruthenium and tungsten catalysts. Ribeiro LS; Órfão JJM; Pereira MFR Bioresour Technol; 2018 Sep; 263():402-409. PubMed ID: 29772501 [TBL] [Abstract][Full Text] [Related]
9. Particle size-control enables extraordinary activity of ruthenium nanoparticles/multiwalled carbon nanotube catalysts towards the oxygen reduction reaction. Liu C; Bai G; Jiao Z; Lv B; Wang Y; Tong X; Yang N Nanoscale; 2019 Aug; 11(29):13968-13976. PubMed ID: 31305840 [TBL] [Abstract][Full Text] [Related]
10. Ru nanoparticles dispersed on magnetic yolk-shell nanoarchitectures with Fe Yang Y; Zhang W; Yang F; Zhou B; Zeng D; Zhang N; Zhao G; Hao S; Zhang X Nanoscale; 2018 Feb; 10(5):2199-2206. PubMed ID: 29334102 [TBL] [Abstract][Full Text] [Related]
11. Highly selective isomerization of cottonseed oil into conjugated linoleic acid catalyzed by multiwalled carbon nanotube supported ruthenium. Liu S; Yu B; Wang Z; Hu J; Fu M; Wang Y; Liu J; Guo Z; Xu X; Ding Y RSC Adv; 2019 Jul; 9(36):20698-20705. PubMed ID: 35515563 [TBL] [Abstract][Full Text] [Related]
12. Surface Acidic Species-Driven Reductive Amination of Furfural with Ru/T-ZrO Saini K; Arulananda Babu S; Saravanamurugan S ChemSusChem; 2024 Aug; ():e202401277. PubMed ID: 39115033 [TBL] [Abstract][Full Text] [Related]
13. A high performance catalyst of shape-specific ruthenium nanoparticles for production of primary amines by reductive amination of carbonyl compounds. Chandra D; Inoue Y; Sasase M; Kitano M; Bhaumik A; Kamata K; Hosono H; Hara M Chem Sci; 2018 Jul; 9(27):5949-5956. PubMed ID: 30079209 [TBL] [Abstract][Full Text] [Related]
14. Low temperature performance and sulfur resistance enhancement of Mn-Ce oxides supported on W-modified MWCNT for NH Tu X; Liu Z; He D; Xu B; Lu M; Huang B; Zhang Y; Yu C J Air Waste Manag Assoc; 2021 Jun; 71(6):689-700. PubMed ID: 33428540 [TBL] [Abstract][Full Text] [Related]
15. Hydrogenation of Lactic Acid to 1,2-Propanediol over Ru-Based Catalysts. Liu K; Huang X; Pidko EA; Hensen EJM ChemCatChem; 2018 Feb; 10(4):810-817. PubMed ID: 29541255 [TBL] [Abstract][Full Text] [Related]
16. Heteroepitaxial Growth of B Kang S; Cha J; Jo YS; Lee YJ; Sohn H; Kim Y; Song CK; Kim Y; Lim DH; Park J; Yoon CW Adv Mater; 2023 Jan; 35(4):e2203364. PubMed ID: 35853218 [TBL] [Abstract][Full Text] [Related]
17. Reducible tungsten(VI) oxide-supported ruthenium(0) nanoparticles: highly active catalyst for hydrolytic dehydrogenation of ammonia borane. Akbayrak S; Tonbul Y; Özkar S Turk J Chem; 2023; 47(5):1224-1238. PubMed ID: 38173757 [TBL] [Abstract][Full Text] [Related]
18. Amine-functionalized MIL-53(Al) with embedded ruthenium nanoparticles as a highly efficient catalyst for the hydrolytic dehydrogenation of ammonia borane. Zhang S; Zhou L; Chen M RSC Adv; 2018 Mar; 8(22):12282-12291. PubMed ID: 35539406 [TBL] [Abstract][Full Text] [Related]
19. Polymeric Ruthenium Porphyrin-Functionalized Carbon Nanotubes and Graphene for Levulinic Ester Transformations into γ-Valerolactone and Pyrrolidone Derivatives. Zhang T; Ge Y; Wang X; Chen J; Huang X; Liao Y ACS Omega; 2017 Jul; 2(7):3228-3240. PubMed ID: 31457649 [TBL] [Abstract][Full Text] [Related]
20. Highly active Ru/TiO Camposeco R; Miguel O; Torres AE; Armas DE; Zanella R Environ Sci Pollut Res Int; 2023 Sep; 30(43):98076-98090. PubMed ID: 37603243 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]