These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38334572)

  • 1. Analysis of Carbon Nanoparticle Coatings via Wettability.
    Griffo R; Di Natale F; Minale M; Sirignano M; Parisi A; Carotenuto C
    Nanomaterials (Basel); 2024 Feb; 14(3):. PubMed ID: 38334572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the wettability of plastic by thermally embedding coated aluminium oxide nanoparticles into the surface.
    Hill D; Barron AR; Alexander S
    J Colloid Interface Sci; 2020 May; 567():45-53. PubMed ID: 32035393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning Prediction of TiO
    Jafari Gukeh M; Moitra S; Ibrahim AN; Derrible S; Megaridis CM
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):46171-46179. PubMed ID: 34523902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superhydrophobic-superhydrophilic binary micropatterns by localized thermal treatment of polyhedral oligomeric silsesquioxane (POSS)-silica films.
    Schutzius TM; Bayer IS; Jursich GM; Das A; Megaridis CM
    Nanoscale; 2012 Sep; 4(17):5378-85. PubMed ID: 22820974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A facile dip-coating approach based on three silica sols to fabrication of broadband antireflective superhydrophobic coatings.
    Gao L; He J
    J Colloid Interface Sci; 2013 Jun; 400():24-30. PubMed ID: 23582903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.
    Han JT; Kim S; Karim A
    Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion.
    Qahtan TF; Gondal MA; Alade IO; Dastageer MA
    Sci Rep; 2017 Aug; 7(1):7531. PubMed ID: 28790392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wettability conversion from superoleophobic to superhydrophilic on titania/single-walled carbon nanotube composite coatings.
    Zhang M; Zhang T; Cui T
    Langmuir; 2011 Aug; 27(15):9295-301. PubMed ID: 21732680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size and morphology dependent surface wetting based on hydrocarbon functionalized nanoparticles.
    Hill D; Attia H; Barron AR; Alexander S
    J Colloid Interface Sci; 2019 May; 543():328-334. PubMed ID: 30836288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of working gas pressure on zirconium dioxide thin film prepared by pulsed plasma deposition: roughness, wettability, friction and wear characteristics.
    Berni M; Marchiori G; Gambardella A; Boi M; Bianchi M; Russo A; Visani A; Marcacci M; Pavan PG; Lopomo NF
    J Mech Behav Biomed Mater; 2017 Aug; 72():200-208. PubMed ID: 28500999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired nanoparticle spray-coating for superhydrophobic flexible materials with oil/water separation capabilities.
    Geraldi NR; Dodd LE; Xu BB; Wood D; Wells GG; McHale G; Newton MI
    Bioinspir Biomim; 2018 Feb; 13(2):024001. PubMed ID: 29239856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instant Tuning of Superhydrophilic to Robust Superhydrophobic and Self-Cleaning Metallic Coating: Simple, Direct, One-Step, and Scalable Technique.
    Rahman OSA; Mukherjee B; Islam A; Keshri AK
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4616-4624. PubMed ID: 30608641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wettability control of ZnO nanoparticles for universal applications.
    Lee M; Kwak G; Yong K
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3350-6. PubMed ID: 21819107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable wetting of polymer surfaces.
    Yilgor I; Bilgin S; Isik M; Yilgor E
    Langmuir; 2012 Oct; 28(41):14808-14. PubMed ID: 22989033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topography versus chemistry - How can we control surface wetting?
    Lößlein SM; Mücklich F; Grützmacher PG
    J Colloid Interface Sci; 2022 Mar; 609():645-656. PubMed ID: 34839911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of hydrophobicity and durability of functionalized aluminium oxide nanoparticle coatings with magnetite nanoparticles-links between morphology and wettability.
    Hill D; Barron AR; Alexander S
    J Colloid Interface Sci; 2019 Nov; 555():323-330. PubMed ID: 31394319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films.
    Aytug T; Simpson JT; Lupini AR; Trejo RM; Jellison GE; Ivanov IN; Pennycook SJ; Hillesheim DA; Winter KO; Christen DK; Hunter SR; Haynes JA
    Nanotechnology; 2013 Aug; 24(31):315602. PubMed ID: 23857991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wettability of Y₂O₃: A Relative Analysis of Thermally Oxidized, Reactively Sputtered and Template Assisted Nanostructured Coatings.
    Barshilia HC; Chaudhary A; Kumar P; Manikandanath NT
    Nanomaterials (Basel); 2012 Feb; 2(1):65-78. PubMed ID: 28348296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transparent and durable superhydrophobic coatings for anti-bioadhesion.
    Zhao X; Yu B; Zhang J
    J Colloid Interface Sci; 2017 Sep; 501():222-230. PubMed ID: 28456106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.