BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38334653)

  • 1. Systematic Comparison of Computational Tools for Sanger Sequencing-Based Genome Editing Analysis.
    Aoki K; Yamasaki M; Umezono R; Hamamoto T; Kamachi Y
    Cells; 2024 Jan; 13(3):. PubMed ID: 38334653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. INDEL detection, the 'Achilles heel' of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels.
    Bennett EP; Petersen BL; Johansen IE; Niu Y; Yang Z; Chamberlain CA; Met Ö; Wandall HH; Frödin M
    Nucleic Acids Res; 2020 Dec; 48(21):11958-11981. PubMed ID: 33170255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Quantitative Evaluation of CRISPR Genome Editing by TIDE and TIDER.
    Brinkman EK; van Steensel B
    Methods Mol Biol; 2019; 1961():29-44. PubMed ID: 30912038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of methods for effective identification of CRISPR/Cas9-induced indels in rice.
    Biswas S; Li R; Yuan Z; Zhang D; Zhao X; Shi J
    Plant Cell Rep; 2019 Apr; 38(4):503-510. PubMed ID: 30783736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deconvolution of Complex DNA Repair (DECODR): Establishing a Novel Deconvolution Algorithm for Comprehensive Analysis of CRISPR-Edited Sanger Sequencing Data.
    Bloh K; Kanchana R; Bialk P; Banas K; Zhang Z; Yoo BC; Kmiec EB
    CRISPR J; 2021 Feb; 4(1):120-131. PubMed ID: 33571043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and Quantitative Identification of Ex Vivo Precise Genome Targeting-Induced Indel Events by IDAA.
    König S; Yang Z; Wandall HH; Mussolino C; Bennett EP
    Methods Mol Biol; 2019; 1961():45-66. PubMed ID: 30912039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low incidence of SNVs and indels in trio genomes of Cas9-mediated multiplex edited sheep.
    Wang X; Liu J; Niu Y; Li Y; Zhou S; Li C; Ma B; Kou Q; Petersen B; Sonstegard T; Huang X; Jiang Y; Chen Y
    BMC Genomics; 2018 May; 19(1):397. PubMed ID: 29801435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmable Single and Multiplex Base-Editing in
    Li Y; Ma S; Sun L; Zhang T; Chang J; Lu W; Chen X; Liu Y; Wang X; Shi R; Zhao P; Xia Q
    G3 (Bethesda); 2018 May; 8(5):1701-1709. PubMed ID: 29555822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.
    Komor AC; Kim YB; Packer MS; Zuris JA; Liu DR
    Nature; 2016 May; 533(7603):420-4. PubMed ID: 27096365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR deactivation in mammalian cells using photocleavable guide RNAs.
    Zou RS; Liu Y; Ha T
    STAR Protoc; 2021 Dec; 2(4):100909. PubMed ID: 34746867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISP-ID: decoding CRISPR mediated indels by Sanger sequencing.
    Dehairs J; Talebi A; Cherifi Y; Swinnen JV
    Sci Rep; 2016 Jul; 6():28973. PubMed ID: 27363488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions.
    Lo TW; Pickle CS; Lin S; Ralston EJ; Gurling M; Schartner CM; Bian Q; Doudna JA; Meyer BJ
    Genetics; 2013 Oct; 195(2):331-48. PubMed ID: 23934893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tools for Efficient Genome Editing; ZFN, TALEN, and CRISPR.
    Shamshirgaran Y; Liu J; Sumer H; Verma PJ; Taheri-Ghahfarokhi A
    Methods Mol Biol; 2022; 2495():29-46. PubMed ID: 35696026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital droplet PCR and IDAA for the detection of CRISPR indel edits in the malaria species
    Carballar-Lejarazú R; Kelsey A; Pham TB; Bennett EP; James AA
    Biotechniques; 2020 Apr; 68(4):172-179. PubMed ID: 32040336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-GRANT: a cross-platform graphical analysis tool for high-throughput CRISPR-based genome editing evaluation.
    Fu H; Shan C; Kang F; Yu L; Li Z; Yin Y
    BMC Bioinformatics; 2023 May; 24(1):219. PubMed ID: 37254060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool.
    Ronda C; Pedersen LE; Hansen HG; Kallehauge TB; Betenbaugh MJ; Nielsen AT; Kildegaard HF
    Biotechnol Bioeng; 2014 Aug; 111(8):1604-16. PubMed ID: 24827782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple method based on Sanger sequencing and MS Word wildcard searching to identify Cas9-induced frameshift mutations.
    Jie H; Li Z; Wang P; Zhao L; Zhang Q; Yao X; Song X; Zhao Y; Yao S
    Lab Invest; 2017 Dec; 97(12):1500-1507. PubMed ID: 28825696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Tools and Resources for CRISPR/Cas Genome Editing.
    Li C; Chu W; Gill RA; Sang S; Shi Y; Hu X; Yang Y; Zaman QU; Zhang B
    Genomics Proteomics Bioinformatics; 2023 Feb; 21(1):108-126. PubMed ID: 35341983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly peak parser: Method and software for identification of unknown indels using sanger sequencing of polymerase chain reaction products.
    Hill JT; Demarest BL; Bisgrove BW; Su YC; Smith M; Yost HJ
    Dev Dyn; 2014 Dec; 243(12):1632-6. PubMed ID: 25160973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can Designer Indels Be Tailored by Gene Editing?: Can Indels Be Customized?
    Trimidal SG; Benjamin R; Bae JE; Han MV; Kong E; Singer A; Williams TS; Yang B; Schiller MR
    Bioessays; 2019 Dec; 41(12):e1900126. PubMed ID: 31693213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.