These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38334653)

  • 21. Tracking of Indels by DEcomposition is a Simple and Effective Method to Assess Efficiency of Guide RNAs in Zebrafish.
    Etard C; Joshi S; Stegmaier J; Mikut R; Strähle U
    Zebrafish; 2017 Dec; 14(6):586-588. PubMed ID: 28767326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The novel insight into the outcomes of CRISPR/Cas9 editing intra- and inter-species.
    Chang J; Chen X; Zhang T; Wang R; Wang A; Lan X; Zhou Y; Ma S; Xia Q
    Int J Biol Macromol; 2020 Nov; 163():711-717. PubMed ID: 32652159
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimized detection of insertions/deletions (INDELs) in whole-exome sequencing data.
    Kim BY; Park JH; Jo HY; Koo SK; Park MH
    PLoS One; 2017; 12(8):e0182272. PubMed ID: 28792971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A PCR based protocol for detecting indel mutations induced by TALENs and CRISPR/Cas9 in zebrafish.
    Yu C; Zhang Y; Yao S; Wei Y
    PLoS One; 2014; 9(6):e98282. PubMed ID: 24901507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amplification-free long-read sequencing reveals unforeseen CRISPR-Cas9 off-target activity.
    Höijer I; Johansson J; Gudmundsson S; Chin CS; Bunikis I; Häggqvist S; Emmanouilidou A; Wilbe M; den Hoed M; Bondeson ML; Feuk L; Gyllensten U; Ameur A
    Genome Biol; 2020 Dec; 21(1):290. PubMed ID: 33261648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BEAT: A Python Program to Quantify Base Editing from Sanger Sequencing.
    Xu L; Liu Y; Han R
    CRISPR J; 2019 Aug; 2(4):223-229. PubMed ID: 31328964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. UDiTaS™, a genome editing detection method for indels and genome rearrangements.
    Giannoukos G; Ciulla DM; Marco E; Abdulkerim HS; Barrera LA; Bothmer A; Dhanapal V; Gloskowski SW; Jayaram H; Maeder ML; Skor MN; Wang T; Myer VE; Wilson CJ
    BMC Genomics; 2018 Mar; 19(1):212. PubMed ID: 29562890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insertion/deletion-activated frame-shift fluorescence protein is a sensitive reporter for genomic DNA editing.
    Kumar A; Birnbaum MD; Moorthy BT; Singh J; Palovcak A; Patel DM; Zhang F
    BMC Genomics; 2019 Jul; 20(1):609. PubMed ID: 31340764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors.
    Anzalone AV; Koblan LW; Liu DR
    Nat Biotechnol; 2020 Jul; 38(7):824-844. PubMed ID: 32572269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discrepancies in indel software resolution with somatic CRISPR/Cas9 tumorigenesis models.
    Brockman QR; Scherer A; McGivney GR; Gutierrez WR; Rytlewski J; Sheehan A; Warrier A; Laverty EA; Roughton G; Carnevale NC; Knepper-Adrian V; Dodd RD
    Sci Rep; 2023 Sep; 13(1):14798. PubMed ID: 37684258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Web-based design and analysis tools for CRISPR base editing.
    Hwang GH; Park J; Lim K; Kim S; Yu J; Yu E; Kim ST; Eils R; Kim JS; Bae S
    BMC Bioinformatics; 2018 Dec; 19(1):542. PubMed ID: 30587106
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimating Copy-Number Proportions: The Comeback of Sanger Sequencing.
    Seroussi E
    Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33671263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tools for experimental and computational analyses of off-target editing by programmable nucleases.
    Bao XR; Pan Y; Lee CM; Davis TH; Bao G
    Nat Protoc; 2021 Jan; 16(1):10-26. PubMed ID: 33288953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient Single-Nucleotide Microbial Genome Editing Achieved Using CRISPR/Cpf1 with Maximally 3'-End-Truncated crRNAs.
    Lee HJ; Kim HJ; Park YJ; Lee SJ
    ACS Synth Biol; 2022 Jun; 11(6):2134-2143. PubMed ID: 35584409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Necessity for Validation of Effectiveness of Selected Guide RNA In Silico for Application of CRISPR/Cas9.
    Kim DH; Lee J; Suh Y; Lee K
    Mol Biotechnol; 2021 Feb; 63(2):140-149. PubMed ID: 33386580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmid-based CRISPR-Cas9 system efficacy for introducing targeted mutations in CD81 gene of MDA-MB-231 cell line.
    Arbabi Zaboli K; Rahimi H; Thekkiniath J; Taromchi AH; Kaboli S
    Folia Histochem Cytobiol; 2022; 60(1):13-23. PubMed ID: 35157300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Miniature CRISPR-Cas12f1-Mediated Single-Nucleotide Microbial Genome Editing Using 3'-Truncated sgRNA.
    Lee HJ; Kim HJ; Lee SJ
    CRISPR J; 2023 Feb; 6(1):52-61. PubMed ID: 36576897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Easy quantification of template-directed CRISPR/Cas9 editing.
    Brinkman EK; Kousholt AN; Harmsen T; Leemans C; Chen T; Jonkers J; van Steensel B
    Nucleic Acids Res; 2018 Jun; 46(10):e58. PubMed ID: 29538768
    [TBL] [Abstract][Full Text] [Related]  

  • 39. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment.
    Boel A; Steyaert W; De Rocker N; Menten B; Callewaert B; De Paepe A; Coucke P; Willaert A
    Sci Rep; 2016 Jul; 6():30330. PubMed ID: 27461955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expanding the CRISPR toolbox for Chinese hamster ovary cells with comprehensive tools for Mad7 genome editing.
    Rojek JB; Basavaraju Y; Nallapareddy S; Bulté DB; Baumgartner R; Schoffelen S; Grav LM; Goletz S; Pedersen LE
    Biotechnol Bioeng; 2023 Jun; 120(6):1478-1491. PubMed ID: 36864663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.