These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38334705)

  • 1. Rotational diffusion of colloidal microspheres near flat walls.
    Carrasco-Fadanelli V; Mao Y; Nakakomi T; Xu H; Yamamoto J; Yanagishima T; Buttinoni I
    Soft Matter; 2024 Feb; 20(9):2024-2031. PubMed ID: 38334705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotational diffusion of partially wetted colloids at fluid interfaces.
    Stocco A; Chollet B; Wang X; Blanc C; Nobili M
    J Colloid Interface Sci; 2019 Apr; 542():363-369. PubMed ID: 30769259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rotational diffusion of colloidal particles near confining walls.
    Jones RB
    J Chem Phys; 2005 Oct; 123(16):164705. PubMed ID: 16268720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-diffusion in two-dimensional hard ellipsoid suspensions.
    Zheng Z; Han Y
    J Chem Phys; 2010 Sep; 133(12):124509. PubMed ID: 20886952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic interactions and the diffusivity of spheroidal particles.
    Marath NK; Wettlaufer JS
    J Chem Phys; 2019 Jul; 151(2):024107. PubMed ID: 31301717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotational Analysis of Spherical, Optically Anisotropic Janus Particles by Dynamic Microscopy.
    Wittmeier A; Holterhoff AL; Johnson J; Gibbs JG
    Langmuir; 2015 Sep; 31(38):10402-10. PubMed ID: 26352095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roughness induced rotational slowdown near the colloidal glass transition.
    Ilhan B; Mugele F; Duits MHG
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1709-1716. PubMed ID: 34592556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translational and rotational dynamics in dense suspensions of smooth and rough colloids.
    Hsiao LC; Saha-Dalal I; Larson RG; Solomon MJ
    Soft Matter; 2017 Dec; 13(48):9229-9236. PubMed ID: 29199309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic diffusion coefficients of dumbbell- and spherocylinder-shaped colloids and their application in simulations of crowded monolayers.
    Lüders A; Zander E; Nielaba P
    J Chem Phys; 2021 Sep; 155(10):104113. PubMed ID: 34525819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental system for one-dimensional rotational brownian motion.
    McNaughton BH; Kinnunen P; Shlomi M; Cionca C; Pei SN; Clarke R; Argyrakis P; Kopelman R
    J Phys Chem B; 2011 May; 115(18):5212-8. PubMed ID: 21500841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlated diffusion of colloidal particles near a liquid-liquid interface.
    Zhang W; Chen S; Li N; Zhang JZ; Chen W
    PLoS One; 2014; 9(1):e85173. PubMed ID: 24465498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotational and translational diffusion of fluorocarbon tracer spheres in semidilute xanthan solutions.
    Koenderink GH; Sacanna S; Aarts DG; Philipse AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021804. PubMed ID: 14995480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brownian motion studies of viscoelastic colloidal gels by rotational single particle tracking.
    Liang M; Harder R; Robinson IK
    IUCrJ; 2014 May; 1(Pt 3):172-8. PubMed ID: 25075336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of translational and rotational dynamics of birefringent colloidal particles by depolarized light scattering in the far- and near-field regimes.
    Escobedo-Sánchez MA; De la Cruz-Burelo HA; Arauz-Lara JL; Haro-Pérez C; Rojas-Ochoa LF
    J Chem Phys; 2015 Jul; 143(4):044902. PubMed ID: 26233159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spherical probes for simultaneous measurement of rotational and translational diffusion in 3 dimensions.
    Ilhan B; Schoppink JJ; Mugele F; Duits MHG
    J Colloid Interface Sci; 2020 Sep; 576():322-329. PubMed ID: 32447022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-diffusion in submonolayer colloidal fluids near a wall.
    Anekal SG; Bevan MA
    J Chem Phys; 2006 Jul; 125(3):34906. PubMed ID: 16863384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent monodisperse silica ellipsoids for optical rotational diffusion studies.
    Sacanna S; Rossi L; Kuipers BW; Philipse AP
    Langmuir; 2006 Feb; 22(4):1822-7. PubMed ID: 16460113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rotational and translational self-diffusion in concentrated suspensions of permeable particles.
    Abade GC; Cichocki B; Ekiel-Jezewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2011 Jun; 134(24):244903. PubMed ID: 21721660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colloidal Organosilica Spheres for Three-Dimensional Confocal Microscopy.
    Liu Y; Yanagishima T; Curran A; Edmond KV; Sacanna S; Dullens RPA
    Langmuir; 2019 Jun; 35(24):7962-7969. PubMed ID: 31095907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.