BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38334708)

  • 1. Investigation of Interface Characteristics and Physisorption Mechanism in Quantum Dots/TiO
    Chon B; Lee HJ; Kang Y; Kim HW; Kim CH; Son HJ
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):9414-9427. PubMed ID: 38334708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying Geometric Strain at the PbS QD-TiO₂ Anode Interface and Its Effect on Electronic Structures.
    Trejo O; Roelofs KE; Xu S; Logar M; Sarangi R; Nordlund D; Dadlani AL; Kravec R; Dasgupta NP; Bent SF; Prinz FB
    Nano Lett; 2015 Dec; 15(12):7829-36. PubMed ID: 26554814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Cu2O Octadecahedron/TiO2 Quantum Dot Heterojunctions with High Visible Light Photocatalytic Activity and High Stability.
    Xu X; Gao Z; Cui Z; Liang Y; Li Z; Zhu S; Yang X; Ma J
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):91-101. PubMed ID: 26651845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Mono- and Bifunctional Surface Ligands of Cu-In-Se Quantum Dots on Photoelectrochemical Hydrogen Production.
    Park SI; Jung SM; Kim JY; Yang J
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot.
    Chen J; Lei W; Deng WQ
    Nanoscale; 2011 Feb; 3(2):674-7. PubMed ID: 21132215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Efficiency Mesoscopic Solar Cells Using CsPbI
    Chen K; Jin W; Zhang Y; Yang T; Reiss P; Zhong Q; Bach U; Li Q; Wang Y; Zhang H; Bao Q; Liu Y
    J Am Chem Soc; 2020 Feb; 142(8):3775-3783. PubMed ID: 31967471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Insights into the Electron-Collection Efficiency Improvement of CdS-Sensitized TiO
    Chen YL; Chen YH; Chen JW; Cao F; Li L; Luo ZM; Leu IC; Pu YC
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8126-8137. PubMed ID: 30726054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linker-assisted attachment of CdSe quantum dots to TiO2: Time- and concentration-dependent adsorption, agglomeration, and sensitized photocurrent.
    Kern ME; Watson DF
    Langmuir; 2014 Nov; 30(44):13293-300. PubMed ID: 25333329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of co-adsorption on interfacial charge transfer in a quantum dot@dye composite.
    Cui P; Xue Y
    Nanoscale Res Lett; 2021 Sep; 16(1):147. PubMed ID: 34542732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells.
    Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.
    Yun HJ; Paik T; Diroll B; Edley ME; Baxter JB; Murray CB
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14692-700. PubMed ID: 27224958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganometallic Photocatalyst for CO
    Son HJ; Pac C; Kang SO
    Acc Chem Res; 2021 Dec; 54(24):4530-4544. PubMed ID: 34881862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling photoinduced electron transfer from PbS@CdS core@shell quantum dots to metal oxide nanostructured thin films.
    Zhao H; Fan Z; Liang H; Selopal GS; Gonfa BA; Jin L; Soudi A; Cui D; Enrichi F; Natile MM; Concina I; Ma D; Govorov AO; Rosei F; Vomiero A
    Nanoscale; 2014 Jun; 6(12):7004-11. PubMed ID: 24839954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured TiO2 Films Attached CdSe QDs Toward Enhanced Photoelectrochemical Performance.
    Du Y; Yang P; Liu Y; Zhao J; He H; Miao Y
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6338-43. PubMed ID: 27427714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection from a PbSe quantum dot into the TiO2 surface.
    Long R; Prezhdo OV
    J Am Chem Soc; 2011 Nov; 133(47):19240-9. PubMed ID: 22007727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoinduced Energy Shift in Quantum-Dot-Sensitized TiO2: A First-Principles Analysis.
    Azpiroz JM; Ronca E; De Angelis F
    J Phys Chem Lett; 2015 Apr; 6(8):1423-9. PubMed ID: 26263146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimizing Electron-Hole Recombination on TiO2 Sensitized with PbSe Quantum Dots: Time-Domain Ab Initio Analysis.
    Long R; English NJ; Prezhdo OV
    J Phys Chem Lett; 2014 Sep; 5(17):2941-6. PubMed ID: 26278240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient quantum dot-sensitized TiO2 solar cells based on multilayered semiconductors (ZnSe/CdS/CdSe).
    Yang L; McCue C; Zhang Q; Uchaker E; Mai Y; Cao G
    Nanoscale; 2015 Feb; 7(7):3173-80. PubMed ID: 25615827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of multilayered CdSe quantum dot sensitizers by electrostatic layer-by-layer assembly and a series of post-treatments toward efficient quantum dot-sensitized mesoporous TiO2 solar cells.
    Jin H; Choi S; Velu R; Kim S; Lee HJ
    Langmuir; 2012 Mar; 28(12):5417-26. PubMed ID: 22380945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Efficiency Quantum Dot Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots on Photoanodes.
    Wang W; Jiang G; Yu J; Wang W; Pan Z; Nakazawa N; Shen Q; Zhong X
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22549-22559. PubMed ID: 28621932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.