BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38335742)

  • 1. Beam quality correction factors for ionization chambers in a 0.35 T magnetic resonance (MR)-linac - A Monte Carlo study.
    Ullah Khan A; DeWerd LA; Yadav P
    Phys Med; 2024 Mar; 119():103314. PubMed ID: 38335742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental measurement of ionization chamber angular response and associated magnetic field correction factors in MR-linac.
    Iakovenko V; Keller B; Sahgal A; Sarfehnia A
    Med Phys; 2020 Apr; 47(4):1940-1948. PubMed ID: 31955432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental determination of magnetic field quality conversion factors for eleven ionization chambers in 1.5 T and 0.35 T MR-linac systems.
    Orlando N; Crosby J; Glide-Hurst C; Culberson W; Keller B; Sarfehnia A
    Med Phys; 2024 Apr; 51(4):2998-3009. PubMed ID: 38060696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dosimetry in 1.5 T MR-Linacs: Monte Carlo determination of magnetic field correction factors and investigation of the air gap effect.
    Margaroni V; Pappas EP; Episkopakis A; Pantelis E; Papagiannis P; Marinos N; Karaiskos P
    Med Phys; 2023 Feb; 50(2):1132-1148. PubMed ID: 36349535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo calculation of beam quality correction factors in proton beams using TOPAS/GEANT4.
    Baumann KS; Kaupa S; Bach C; Engenhart-Cabillic R; Zink K
    Phys Med Biol; 2020 Mar; 65(5):055015. PubMed ID: 31962306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the perturbation effect and LET dependence of beam quality correction factors in carbon ion beams.
    Khan AU; Nelson NP; Culberson WS; DeWerd LA
    Med Phys; 2023 Feb; 50(2):1105-1120. PubMed ID: 36334024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying uncertainties associated with reference dosimetry in an MR-Linac.
    Iakovenko V; Keller B; Malkov VN; Sahgal A; Sarfehnia A
    J Appl Clin Med Phys; 2023 Nov; 24(11):e14087. PubMed ID: 37354202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental determination of magnetic field correction factors for ionization chambers in parallel and perpendicular orientations.
    Pojtinger S; Nachbar M; Ghandour S; Pisaturo O; Pachoud M; Kapsch RP; Thorwarth D
    Phys Med Biol; 2020 Dec; 65(24):245044. PubMed ID: 33181493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dosimetry in magnetic fields with dedicated MR-compatible ionization chambers.
    Shukla BK; Spindeldreier CK; Schrenk O; Bakenecker AC; Klüter S; Kawrakow I; Runz A; Burigo L; Karger CP; Greilich S; Pfaffenberger A
    Phys Med; 2020 Dec; 80():259-266. PubMed ID: 33220650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and Monte Carlo-based determination of magnetic field correction factors
    Alissa M; Zink K; Kapsch RP; Schoenfeld AA; Frick S; Czarnecki D
    Med Phys; 2023 Jul; 50(7):4578-4589. PubMed ID: 36897832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reference dosimetry in magnetic fields: formalism and ionization chamber correction factors.
    O'Brien DJ; Roberts DA; Ibbott GS; Sawakuchi GO
    Med Phys; 2016 Aug; 43(8):4915. PubMed ID: 27487908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation dosimetry in magnetic fields with Farmer-type ionization chambers: determination of magnetic field correction factors for different magnetic field strengths and field orientations.
    Spindeldreier CK; Schrenk O; Bakenecker A; Kawrakow I; Burigo L; Karger CP; Greilich S; Pfaffenberger A
    Phys Med Biol; 2017 Aug; 62(16):6708-6728. PubMed ID: 28636564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element method for the determination of the relative response of ionization chambers in MR-linacs: simulation and experimental validation up to 1.5 T.
    Pojtinger S; Kapsch RP; Dohm OS; Thorwarth D
    Phys Med Biol; 2019 Jul; 64(13):135011. PubMed ID: 31181560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive volume effects on Monte Carlo calculated ion chamber response in magnetic fields.
    Malkov VN; Rogers DWO
    Med Phys; 2017 Sep; 44(9):4854-4858. PubMed ID: 28636763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct determination of [Formula: see text] for cylindrical ionization chambers in a 6 MV 0.35 T MR-linac.
    Krauss A; Spindeldreier CK; Klüter S
    Phys Med Biol; 2020 Dec; 65(23):235049. PubMed ID: 33300501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TOPAS/Geant4 configuration for ionization chamber calculations in proton beams.
    Wulff J; Baumann KS; Verbeek N; Bäumer C; Timmermann B; Zink K
    Phys Med Biol; 2018 Jun; 63(11):115013. PubMed ID: 29737969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo optimization and experimental validation of a prototype ionization chamber for accurate magnetic resonance image guided radiation therapy (MRgRT) daily output constancy measurements in solid phantoms.
    Muir BR; Nusrat H; Sarfehnia A; Renaud J
    Med Phys; 2022 Aug; 49(8):5483-5490. PubMed ID: 35536047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical reference dosimetry for the 0.5 T inline rotating biplanar Linac-MR.
    Yip E; Tari SY; Reynolds MW; Sinn D; Murray BR; Fallone BG; Oliver PA
    Med Phys; 2024 Apr; 51(4):2933-2940. PubMed ID: 38308821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the construction and sensitive volume of compact ionization chambers on the magnetic field-dependent dose response.
    Delfs B; Blum I; Tekin T; Schönfeld AB; Kranzer R; Poppinga D; Giesen U; Langner F; Kapsch RP; Poppe B; Looe HK
    Med Phys; 2021 Aug; 48(8):4572-4585. PubMed ID: 34032298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo study of ionization chamber magnetic field correction factors as a function of angle and beam quality.
    Malkov VN; Rogers DWO
    Med Phys; 2018 Feb; 45(2):908-925. PubMed ID: 29218730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.