These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38335746)

  • 1. Impact of hydrological drought occurrence, duration, and severity on Murray-Darling basin water quality.
    Athukoralalage D; Brookes J; McDowell RW; Mosley LM
    Water Res; 2024 Mar; 252():121201. PubMed ID: 38335746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drought impacts on hydrology and water quality under climate change.
    Qiu J; Shen Z; Xie H
    Sci Total Environ; 2023 Feb; 858(Pt 1):159854. PubMed ID: 36461570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal variations of nitrogen and phosphorus retention in an agricultural drainage river in East China.
    Chen D; Lu J; Wang H; Shen Y; Kimberley MO
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):312-20. PubMed ID: 19795144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Streamflow duration curve to explain nutrient export in Midwestern USA watersheds: Implication for water quality achievements.
    Kamrath B; Yuan Y
    J Environ Manage; 2023 Jun; 336():117598. PubMed ID: 36871454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of climate change on nutrient and sediment loads from a subtropical catchment.
    Eccles R; Zhang H; Hamilton D; Trancoso R; Syktus J
    J Environ Manage; 2023 Nov; 345():118738. PubMed ID: 37549638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variations in source apportionments of nutrient load among seasons and hydrological years in a semi-arid watershed: GWLF model results.
    Du X; Li X; Zhang W; Wang H
    Environ Sci Pollut Res Int; 2014 May; 21(10):6506-15. PubMed ID: 24464078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic assessment of the development and recovery characteristics of hydrological drought in a semi-arid area.
    Xu Y; Zhang X; Hao Z; Hao F; Li C
    Sci Total Environ; 2022 Aug; 836():155472. PubMed ID: 35472359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China.
    Zeng X; Zhao N; Sun H; Ye L; Zhai J
    PLoS One; 2015; 10(11):e0141648. PubMed ID: 26544070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin.
    Andersen HE; Kronvang B; Larsen SE; Hoffmann CC; Jensen TS; Rasmussen EK
    Sci Total Environ; 2006 Jul; 365(1-3):223-37. PubMed ID: 16647104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drought, megafires and flood - climate extreme impacts on catchment-scale river water quality on Australia's east coast.
    Johnston SG; Maher DT
    Water Res; 2022 Jun; 218():118510. PubMed ID: 35489146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional frequency analysis of drought severity and duration in Karkheh River Basin, Iran using univariate L-moments method.
    Parvizi S; Eslamian S; Gheysari M; Gohari A; Kopai SS
    Environ Monit Assess; 2022 Apr; 194(5):336. PubMed ID: 35389125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring of meteorological and hydrological droughts in the Vistula basin (Poland).
    Kubiak-Wójcicka K; Bąk B
    Environ Monit Assess; 2018 Oct; 190(11):691. PubMed ID: 30377833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating skill and robustness of seasonal meteorological and hydrological drought forecasts at the catchment scale - Case Catalonia (Spain).
    Van Hateren TC; Sutanto SJ; Van Lanen HAJ
    Environ Int; 2019 Dec; 133(Pt B):105206. PubMed ID: 31678906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of sampling frequency and load calculation methods on quantification of annual river nutrient and suspended solids loads.
    Elwan A; Singh R; Patterson M; Roygard J; Horne D; Clothier B; Jones G
    Environ Monit Assess; 2018 Jan; 190(2):78. PubMed ID: 29327177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hydrological perspective on drought risk-assessment in the Yellow River Basin under future anthropogenic activities.
    Omer A; Zhuguo M; Yuan X; Zheng Z; Saleem F
    J Environ Manage; 2021 Jul; 289():112429. PubMed ID: 33819649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrological drought persistence and recovery over the CONUS: A multi-stage framework considering water quantity and quality.
    Ahmadi B; Ahmadalipour A; Moradkhani H
    Water Res; 2019 Mar; 150():97-110. PubMed ID: 30508718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal Response of Hydrological Drought to Meteorological Drought on Multi-Time Scales Concerning Endorheic Basin.
    Zhu N; Xu J; Zeng G; Cao X
    Int J Environ Res Public Health; 2021 Aug; 18(17):. PubMed ID: 34501663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decadal-scale export of nitrogen, phosphorus, and sediment from the Susquehanna River basin, USA: Analysis and synthesis of temporal and spatial patterns.
    Zhang Q; Ball WP; Moyer DL
    Sci Total Environ; 2016 Sep; 563-564():1016-29. PubMed ID: 27185349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and assessment of hydrological droughts using GloFAS streamflow data for the Narmada River Basin, India.
    Swain S; Mishra SK; Pandey A; Srivastava PK; Nandi S
    Environ Sci Pollut Res Int; 2023 Apr; ():. PubMed ID: 37071358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrological drought characterization based on GNSS imaging of vertical crustal deformation across the contiguous United States.
    Jiang Z; Hsu YJ; Yuan L; Tang M; Yang X; Yang X
    Sci Total Environ; 2022 Jun; 823():153663. PubMed ID: 35124040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.