These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38335836)

  • 1. Numerical investigation of effect of geometric parameters on performance of rotational hydrodynamic cavitation reactor.
    Zhang X; Lin R; Zhang L; Chen J; Li M; Wang Y
    Ultrason Sonochem; 2024 Feb; 103():106790. PubMed ID: 38335836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of cavitation-vortex interaction mechanism in an advanced rotational hydrodynamic cavitation reactor.
    Xia G; You W; Manickam S; Yoon JY; Xuan X; Sun X
    Ultrason Sonochem; 2024 May; 105():106849. PubMed ID: 38513544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and numerical studies on the cavitation in an advanced rotational hydrodynamic cavitation reactor for water treatment.
    Sun X; Xuan X; Song Y; Jia X; Ji L; Zhao S; Yong Yoon J; Chen S; Liu J; Wang G
    Ultrason Sonochem; 2021 Jan; 70():105311. PubMed ID: 32871384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cavitation characteristics analysis of a novel rotor-radial groove hydrodynamic cavitation reactor.
    Song Y; Hou R; Liu Z; Liu J; Zhang W; Zhang L
    Ultrason Sonochem; 2022 May; 86():106028. PubMed ID: 35569441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation on the cavitation characteristic of a novel cylindrical rotational hydrodynamic cavitation reactor.
    Xue L; Hao Z; Ren W; Wang Y; Liu G; Liu J; Wang H; Bie H
    Ultrason Sonochem; 2024 Jul; 109():106999. PubMed ID: 39033717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the arrangement of cavitation generation unit on the performance of an advanced rotational hydrodynamic cavitation reactor.
    Sun X; Xia G; You W; Jia X; Manickam S; Tao Y; Zhao S; Yoon JY; Xuan X
    Ultrason Sonochem; 2023 Oct; 99():106544. PubMed ID: 37544171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation into cavitational intensity and COD reduction performance of the pinned disc reactor with various rotor-stator arrangements.
    Gostiša J; Zupanc M; Dular M; Širok B; Levstek M; Bizjan B
    Ultrason Sonochem; 2021 Sep; 77():105669. PubMed ID: 34303127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational analysis of flow conditions in hydrodynamic cavitation generator for water treatment processes.
    Gostiša J; Drešar P; Hočevar M; Dular M
    Can J Chem Eng; 2022 Dec; 100(12):3502-3516. PubMed ID: 36605789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification.
    Ge M; Sun C; Zhang G; Coutier-Delgosha O; Fan D
    Ultrason Sonochem; 2022 May; 86():106035. PubMed ID: 35580542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel method for optimization of slit Venturi dimensions through CFD simulation and RSM design.
    Abbasi E; Saadat S; Karimi Jashni A; Shafaei MH
    Ultrason Sonochem; 2020 Oct; 67():105088. PubMed ID: 32279032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CFD-assisted modeling of the hydrodynamic cavitation reactors for wastewater treatment - A review.
    Hong F; Tian H; Yuan X; Liu S; Peng Q; Shi Y; Jin L; Ye L; Jia J; Ying D; Ramsey TS; Huang Y
    J Environ Manage; 2022 Nov; 321():115982. PubMed ID: 36104886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Backflow effects on mass flow gain factor in a centrifugal pump.
    Kang W; Zhou L; Liu D; Wang Z
    Sci Prog; 2021; 104(2):36850421998865. PubMed ID: 33890814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy Loss and Radial Force Variation Caused by Impeller Trimming in a Double-Suction Centrifugal Pump.
    Deng Q; Pei J; Wang W; Lin B; Zhang C; Zhao J
    Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical study of the impact of water injection holes arrangement on cavitation flow control.
    Wang W; Zhang Q; Tang T; Lu S; Yi Q; Wang X
    Sci Prog; 2020; 103(1):36850419877742. PubMed ID: 31829878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using CFD simulations to investigate the shear stress in hydrodynamic cavitation reactors coupled with experimental validation using colony count measurements.
    Polgár M; Agarwal C; Gogate P; Németh G; Csóka L
    Sci Rep; 2022 Oct; 12(1):18034. PubMed ID: 36302786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical investigation on the effect of impeller axial position on hemodynamics of an extracorporeal centrifugal blood pump.
    Lv S; He ZP; Liu GM; Hu SS
    Comput Methods Biomech Biomed Engin; 2023 Sep; ():1-12. PubMed ID: 37724774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of singlet oxygen and superoxide radical produced from vortex-based hydrodynamic cavitation: Mechanism and its relation to cavitation intensity.
    Liu S; Yuan X; Shao Z; Xiang K; Huang W; Tian H; Hong F; Huang Y
    Sci Total Environ; 2024 Jun; 929():172761. PubMed ID: 38670357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Luminescence intensity of vortex cavitation in a Venturi tube changing with cavitation number.
    Soyama H
    Ultrason Sonochem; 2021 Mar; 71():105389. PubMed ID: 33221624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of vortex-based cavitation devices/reactors: Influence of aspect ratio, number of inlets and shape.
    Gode A; Madane K; Ranade VV
    Ultrason Sonochem; 2023 Dec; 101():106695. PubMed ID: 38011805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and numerical investigation on performance of a swirling jet reactor.
    Mancuso G
    Ultrason Sonochem; 2018 Dec; 49():241-248. PubMed ID: 30122469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.