These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38335883)
1. Application of chemical attribution in matching OPNAs-exposed biological samples with exposure sources- based on the impurity profiles via GC × GC-TOFMS analysis. Wang J; Lu X; Zhang Z; Gao R; Pei C; Wang H J Chromatogr A; 2024 Mar; 1718():464718. PubMed ID: 38335883 [TBL] [Abstract][Full Text] [Related]
2. Impurity profiling of a chemical weapon precursor for possible forensic signatures by comprehensive two-dimensional gas chromatography/mass spectrometry and chemometrics. Hoggard JC; Wahl JH; Synovec RE; Mong GM; Fraga CG Anal Chem; 2010 Jan; 82(2):689-98. PubMed ID: 20014817 [TBL] [Abstract][Full Text] [Related]
3. Chemometrics-assisted analysis of chemical impurity profiles of tabun nerve agent using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Lu X; Zhu X; Gao R; Tang H; Pei C; Wang H; Xiao J J Chromatogr A; 2022 Dec; 1685():463643. PubMed ID: 36401911 [TBL] [Abstract][Full Text] [Related]
4. Chemical forensic profiling and attribution signature determination of sarin nerve agent using GC-MS, LC-MS and NMR. Webster RL; Ovenden SPB; McDowall LJ; Dennison GH; Laws MJ; McGill NW; Williams J; Zanatta SD Anal Bioanal Chem; 2022 May; 414(13):3863-3873. PubMed ID: 35396608 [TBL] [Abstract][Full Text] [Related]
5. Progressive expansion of albumin adducts for organophosphorus nerve agent traceability based on single and group adduct collection. Wang J; Lu X; Gao R; Pei C; Wang H Anal Bioanal Chem; 2024 Jun; 416(15):3569-3584. PubMed ID: 38698257 [TBL] [Abstract][Full Text] [Related]
6. Use of Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometric Detection and Random Forest Pattern Recognition Techniques for Classifying Chemical Threat Agents and Detecting Chemical Attribution Signatures. Strozier ED; Mooney DD; Friedenberg DA; Klupinski TP; Triplett CA Anal Chem; 2016 Jul; 88(14):7068-75. PubMed ID: 27295356 [TBL] [Abstract][Full Text] [Related]
7. Preliminary effects of real-world factors on the recovery and exploitation of forensic impurity profiles of a nerve-agent simulant from office media. Fraga CG; Sego LH; Hoggard JC; Acosta GA; Viglino EA; Wahl JH; Synovec RE J Chromatogr A; 2012 Dec; 1270():269-82. PubMed ID: 23177156 [TBL] [Abstract][Full Text] [Related]
8. Study on phosphonylation and modification characteristics of organophosphorus nerve agents on multi-species and multi-source albumins. Wang J; Jin M; Wang Q; Lu X; Gao R; Sun F; Pei C; Wang H J Chromatogr B Analyt Technol Biomed Life Sci; 2024 Jun; 1240():124155. PubMed ID: 38735125 [TBL] [Abstract][Full Text] [Related]
9. Impurity profiling to match a nerve agent to its precursor source for chemical forensics applications. Fraga CG; Acosta GA; Crenshaw MD; Wallace K; Mong GM; Colburn HA Anal Chem; 2011 Dec; 83(24):9564-72. PubMed ID: 22040126 [TBL] [Abstract][Full Text] [Related]
10. A high-throughput UHPLC-MS/MS method for the quantification of five aged butyrylcholinesterase biomarkers from human exposure to organophosphorus nerve agents. Graham LA; Johnson D; Carter MD; Stout EG; Erol HA; Isenberg SL; Mathews TP; Thomas JD; Johnson RC Biomed Chromatogr; 2017 Apr; 31(4):. PubMed ID: 27572107 [TBL] [Abstract][Full Text] [Related]
11. High-Confidence Qualitative Identification of Organophosphorus Nerve Agent Adducts to Human Butyrylcholinesterase. Mathews TP; Carter MD; Johnson D; Isenberg SL; Graham LA; Thomas JD; Johnson RC Anal Chem; 2017 Feb; 89(3):1955-1964. PubMed ID: 28208252 [TBL] [Abstract][Full Text] [Related]
12. Chemical characterization of bio-oils using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. Tessarolo NS; dos Santos LR; Silva RS; Azevedo DA J Chromatogr A; 2013 Mar; 1279():68-75. PubMed ID: 23357744 [TBL] [Abstract][Full Text] [Related]
13. Current Progress for Retrospective Identification of Nerve Agent Biomarkers in Biological Samples after Exposure. Wang J; Lu X; Gao R; Pei C; Wang H Toxics; 2022 Aug; 10(8):. PubMed ID: 36006118 [TBL] [Abstract][Full Text] [Related]
14. Generic detection of organophosphorus nerve agent adducts to butyrylcholinesterase in plasma using liquid chromatography-tandem mass spectrometry combined with an improved procainamide-gel separation and pepsin digestion method. Liu CC; Liang LH; Yan L; Chen B; Liu XJ; Yang Y; Liu SL; Xi HL J Chromatogr A; 2023 May; 1697():463990. PubMed ID: 37075496 [TBL] [Abstract][Full Text] [Related]
15. Chemical attribution of the home-made explosive ETN - Part I: Liquid chromatography-mass spectrometry analysis of partially nitrated erythritol impurities. Bezemer K; McLennan L; van Duin L; Kuijpers CJ; Koeberg M; van den Elshout J; van der Heijden A; Busby T; Yevdokimov A; Schoenmakers P; Smith J; Oxley J; van Asten A Forensic Sci Int; 2020 Feb; 307():110102. PubMed ID: 31884003 [TBL] [Abstract][Full Text] [Related]
16. Investigating the chemical impurity profiles of fentanyl preparations and precursors to identify chemical attribution signatures for synthetic method attribution. Ovenden SPB; McDowall LJ; McKeown HE; McGill NW; Jones OAH; Pearson JR; Petricevic M; Rogers ML; Rook TJ; Williams J; Webster RL; Zanatta SD Forensic Sci Int; 2021 Apr; 321():110742. PubMed ID: 33647569 [TBL] [Abstract][Full Text] [Related]
17. The identification of chemical attribution signatures of stored VX nerve agents using NMR, GC-MS, and LC-HRMS. Ovenden SPB; Webster RL; Micich E; McDowall LJ; McGill NW; Williams J; Zanatta SD Talanta; 2020 May; 211():120753. PubMed ID: 32070627 [TBL] [Abstract][Full Text] [Related]
18. Effects of pressure drop on absolute retention matching in comprehensive two-dimensional gas chromatography. Shellie R; Marriott P; Morrison P; Mondello L J Sep Sci; 2004 May; 27(7-8):504-12. PubMed ID: 15335032 [TBL] [Abstract][Full Text] [Related]
19. The application of gas chromatography/atmospheric pressure chemical ionisation time-of-flight mass spectrometry to impurity identification in Pharmaceutical Development. Bristow T; Harrison M; Sims M Rapid Commun Mass Spectrom; 2010 Jun; 24(11):1673-81. PubMed ID: 20486265 [TBL] [Abstract][Full Text] [Related]
20. Retrospective detection for V-type OPNAs exposure via phosphonylation and disulfide adducts in albumin. Wang J; Sun F; Lu X; Gao R; Pei C; Wang H Sci Rep; 2022 Jun; 12(1):10979. PubMed ID: 35768567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]