These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38335959)

  • 21. Regulatory roles of nitric oxide during larval development and metamorphosis in Ciona intestinalis.
    Comes S; Locascio A; Silvestre F; d'Ischia M; Russo GL; Tosti E; Branno M; Palumbo A
    Dev Biol; 2007 Jun; 306(2):772-84. PubMed ID: 17499701
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for dynamic and multiple roles for huntingtin in Ciona intestinalis.
    Idris MM; Thorndyke MC; Brown ER
    Invert Neurosci; 2013 Dec; 13(2):151-65. PubMed ID: 23797324
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Test cell migration and tunic formation during post-hatching development of the larva of the ascidian, Ciona intestinalis.
    Sato Y; Terakado K; Morisawa M
    Dev Growth Differ; 1997 Feb; 39(1):117-26. PubMed ID: 9079041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A single oscillating proto-hypothalamic neuron gates taxis behavior in the primitive chordate Ciona.
    Chung J; Newman-Smith E; Kourakis MJ; Miao Y; Borba C; Medina J; Laurent T; Gallean B; Faure E; Smith WC
    Curr Biol; 2023 Aug; 33(16):3360-3370.e4. PubMed ID: 37490920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and characterization of microRNAs involved in ascidian larval metamorphosis.
    Zhang X; Liu X; Liu C; Wei J; Yu H; Dong B
    BMC Genomics; 2018 Mar; 19(1):168. PubMed ID: 29490613
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellular identity and Ca
    Okawa N; Shimai K; Ohnishi K; Ohkura M; Nakai J; Horie T; Kuhara A; Kusakabe TG
    Sci Rep; 2020 Oct; 10(1):18590. PubMed ID: 33122709
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diverse ETS transcription factors mediate FGF signaling in the Ciona anterior neural plate.
    Gainous TB; Wagner E; Levine M
    Dev Biol; 2015 Mar; 399(2):218-25. PubMed ID: 25576927
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-cell transcriptome profiling of the Ciona larval brain.
    Sharma S; Wang W; Stolfi A
    Dev Biol; 2019 Apr; 448(2):226-236. PubMed ID: 30392840
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An organismal perspective on C. intestinalis development, origins and diversification.
    Kourakis MJ; Smith WC
    Elife; 2015 Mar; 4():. PubMed ID: 25807088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated behavioural analysis reveals the basic behavioural repertoire of the urochordate Ciona intestinalis.
    Rudolf J; Dondorp D; Canon L; Tieo S; Chatzigeorgiou M
    Sci Rep; 2019 Feb; 9(1):2416. PubMed ID: 30787329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Turbulent shear spurs settlement in larval sea urchins.
    Gaylord B; Hodin J; Ferner MC
    Proc Natl Acad Sci U S A; 2013 Apr; 110(17):6901-6. PubMed ID: 23572585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of substrate material on ascidian larval settlement.
    Chase AL; Dijkstra JA; Harris LG
    Mar Pollut Bull; 2016 May; 106(1-2):35-42. PubMed ID: 27039957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Presence of thyroid hormones in ascidian larvae and their involvement in metamorphosis.
    Patricolo E; Cammarata M; D'Agati P
    J Exp Zool; 2001 Sep; 290(4):426-30. PubMed ID: 11550191
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large-scale characterization of genes specific to the larval nervous system in the ascidian Ciona intestinalis.
    Mochizuki Y; Satou Y; Satoh N
    Genesis; 2003 May; 36(1):62-71. PubMed ID: 12748968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction of a cDNA microarray derived from the ascidian Ciona intestinalis.
    Azumi K; Takahashi H; Miki Y; Fujie M; Usami T; Ishikawa H; Kitayama A; Satou Y; Ueno N; Satoh N
    Zoolog Sci; 2003 Oct; 20(10):1223-9. PubMed ID: 14569145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ci-hox12 tail gradient precedes and participates in the control of the apoptotic-dependent tail regression during Ciona larva metamorphosis.
    Krasovec G; Robine K; Quéinnec E; Karaiskou A; Chambon JP
    Dev Biol; 2019 Apr; 448(2):237-246. PubMed ID: 30819533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcription Factors of the bHLH Family Delineate Vertebrate Landmarks in the Nervous System of a Simple Chordate.
    Negrón-Piñeiro LJ; Wu Y; Di Gregorio A
    Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33114624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ascidians as excellent chordate models for studying the development of the nervous system during embryogenesis and metamorphosis.
    Sasakura Y; Mita K; Ogura Y; Horie T
    Dev Growth Differ; 2012 Apr; 54(3):420-37. PubMed ID: 22524611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuronal map reveals the highly regionalized pattern of the juvenile central nervous system of the ascidian Ciona intestinalis.
    Hozumi A; Horie T; Sasakura Y
    Dev Dyn; 2015 Nov; 244(11):1375-93. PubMed ID: 26250096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Circuit Homology between Decussating Pathways in the Ciona Larval CNS and the Vertebrate Startle-Response Pathway.
    Ryan K; Lu Z; Meinertzhagen IA
    Curr Biol; 2017 Mar; 27(5):721-728. PubMed ID: 28216318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.