These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38336004)

  • 1. KETCHUP: Parameterizing of large-scale kinetic models using multiple datasets with different reference states.
    Hu M; Suthers PF; Maranas CD
    Metab Eng; 2024 Mar; 82():123-133. PubMed ID: 38336004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. K-FIT: An accelerated kinetic parameterization algorithm using steady-state fluxomic data.
    Gopalakrishnan S; Dash S; Maranas C
    Metab Eng; 2020 Sep; 61():197-205. PubMed ID: 32173504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Escherichia coli mutant 13C labeling data to a core kinetic model: A kinetic model parameterization pipeline.
    Foster CJ; Gopalakrishnan S; Antoniewicz MR; Maranas CD
    PLoS Comput Biol; 2019 Sep; 15(9):e1007319. PubMed ID: 31504032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A scalable method for parameter identification in kinetic models of metabolism using steady-state data.
    Srinivasan S; Cluett WR; Mahadevan R
    Bioinformatics; 2019 Dec; 35(24):5216-5225. PubMed ID: 31197317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data.
    Khodayari A; Zomorrodi AR; Liao JC; Maranas CD
    Metab Eng; 2014 Sep; 25():50-62. PubMed ID: 24928774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. k-OptForce: integrating kinetics with flux balance analysis for strain design.
    Chowdhury A; Zomorrodi AR; Maranas CD
    PLoS Comput Biol; 2014 Feb; 10(2):e1003487. PubMed ID: 24586136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic models of metabolism that consider alternative steady-state solutions of intracellular fluxes and concentrations.
    Hameri T; Fengos G; Ataman M; Miskovic L; Hatzimanikatis V
    Metab Eng; 2019 Mar; 52():29-41. PubMed ID: 30455161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isotope-assisted metabolic flux analysis as an equality-constrained nonlinear program for improved scalability and robustness.
    Lugar DJ; Sriram G
    PLoS Comput Biol; 2022 Mar; 18(3):e1009831. PubMed ID: 35324890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains.
    Khodayari A; Maranas CD
    Nat Commun; 2016 Dec; 7():13806. PubMed ID: 27996047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian kinetic modeling for tracer-based metabolomic data.
    Zhang X; Su Y; Lane AN; Stromberg AJ; Fan TWM; Wang C
    BMC Bioinformatics; 2023 Mar; 24(1):108. PubMed ID: 36949395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models.
    Cotten C; Reed JL
    BMC Bioinformatics; 2013 Jan; 14():32. PubMed ID: 23360254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks.
    Hoppe A; Hoffmann S; Holzhütter HG
    BMC Syst Biol; 2007 Jun; 1():23. PubMed ID: 17543097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.
    Andreozzi S; Miskovic L; Hatzimanikatis V
    Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux.
    Tan Y; Rivera JG; Contador CA; Asenjo JA; Liao JC
    Metab Eng; 2011 Jan; 13(1):60-75. PubMed ID: 21075211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general framework for thermodynamically consistent parameterization and efficient sampling of enzymatic reactions.
    Saa P; Nielsen LK
    PLoS Comput Biol; 2015 Apr; 11(4):e1004195. PubMed ID: 25874556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraction of elementary rate constants from global network analysis of E. coli central metabolism.
    Zhao J; Ridgway D; Broderick G; Kovalenko A; Ellison M
    BMC Syst Biol; 2008 May; 2():41. PubMed ID: 18462493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermodynamically consistent metabolic models.
    Pandey V; Hadadi N; Hatzimanikatis V
    PLoS Comput Biol; 2019 May; 15(5):e1007036. PubMed ID: 31083653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of two Saccharomyces cerevisiae strains with kinetic models at genome-scale.
    Hu M; Dinh HV; Shen Y; Suthers PF; Foster CJ; Call CM; Ye X; Pratas J; Fatma Z; Zhao H; Rabinowitz JD; Maranas CD
    Metab Eng; 2023 Mar; 76():1-17. PubMed ID: 36603705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.