These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater. Mateas DJ; Tick GR; Carroll KC J Contam Hydrol; 2017 Sep; 204():40-56. PubMed ID: 28780996 [TBL] [Abstract][Full Text] [Related]
3. Pump-and-treat (P&T) vs groundwater circulation wells (GCW): Which approach delivers more sustainable and effective groundwater remediation? Ciampi P; Esposito C; Bartsch E; Alesi EJ; Petrangeli Papini M Environ Res; 2023 Oct; 234():116538. PubMed ID: 37399987 [TBL] [Abstract][Full Text] [Related]
4. Assessing the impact of source-zone remediation efforts at the contaminant-plume scale through analysis of contaminant mass discharge. Brusseau ML; Hatton J; DiGuiseppi W J Contam Hydrol; 2011 Nov; 126(3-4):130-9. PubMed ID: 22115080 [TBL] [Abstract][Full Text] [Related]
5. An environmental screening model to assess the consequences to soil and groundwater from railroad-tank-car spills of light non-aqueous phase liquids. Yoon H; Werth CJ; Barkan CP; Schaeffer DJ; Anand P J Hazard Mater; 2009 Jun; 165(1-3):332-44. PubMed ID: 19036513 [TBL] [Abstract][Full Text] [Related]
6. A Comprehensive Review for Groundwater Contamination and Remediation: Occurrence, Migration and Adsorption Modelling. Al-Hashimi O; Hashim K; Loffill E; Marolt Čebašek T; Nakouti I; Faisal AAH; Al-Ansari N Molecules; 2021 Sep; 26(19):. PubMed ID: 34641456 [TBL] [Abstract][Full Text] [Related]
7. An Iterative Method of Modeling Pump-Treat-Inject System with "Partial Treatment". Zhang J; Zhang Y; Schwartz FW; Karimi M Ground Water; 2024; 62(5):795-803. PubMed ID: 38061892 [TBL] [Abstract][Full Text] [Related]
8. Source-zone characterization of a chlorinated-solvent contaminated Superfund site in Tucson, AZ. Brusseau ML; Nelson NT; Zhang Z; Blue JE; Rohrer J; Allen T J Contam Hydrol; 2007 Feb; 90(1-2):21-40. PubMed ID: 17049404 [TBL] [Abstract][Full Text] [Related]
9. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater. Liang Y; Cao X; Zhao L; Arellano E Environ Sci Pollut Res Int; 2014 Mar; 21(6):4665-74. PubMed ID: 24352548 [TBL] [Abstract][Full Text] [Related]
10. Dioxin- and POP-contaminated sites--contemporary and future relevance and challenges: overview on background, aims and scope of the series. Weber R; Gaus C; Tysklind M; Johnston P; Forter M; Hollert H; Heinisch E; Holoubek I; Lloyd-Smith M; Masunaga S; Moccarelli P; Santillo D; Seike N; Symons R; Torres JP; Verta M; Varbelow G; Vijgen J; Watson A; Costner P; Woelz J; Wycisk P; Zennegg M Environ Sci Pollut Res Int; 2008 Jul; 15(5):363-93. PubMed ID: 18597132 [TBL] [Abstract][Full Text] [Related]
11. A model with mass transport limitations for pump and treat remediation of soils polluted with NAPL. Gomez-Lahoz C; Garcia-Delgado RA; Wilson DJ Environ Monit Assess; 1994 Sep; 32(2):161-86. PubMed ID: 24214088 [TBL] [Abstract][Full Text] [Related]
12. A field-scale remediation of residual light non-aqueous phase liquid (LNAPL): chemical enhancers for pump and treat. Ciampi P; Esposito C; Cassiani G; Deidda GP; Rizzetto P; Papini MP Environ Sci Pollut Res Int; 2021 Jul; 28(26):35286-35296. PubMed ID: 34085199 [TBL] [Abstract][Full Text] [Related]
13. Characterization and Remediation of Chlorinated Volatile Organic Contaminants in the Vadose Zone: An Overview of Issues and Approaches. Brusseau ML; Carroll KC; Truex MJ; Becker DJ Vadose Zone J; 2013 Nov; 12(4):. PubMed ID: 25383058 [TBL] [Abstract][Full Text] [Related]
14. A numerical model to optimize LNAPL remediation by multi-phase extraction. Qi S; Luo J; O'Connor D; Wang Y; Hou D Sci Total Environ; 2020 May; 718():137309. PubMed ID: 32087590 [TBL] [Abstract][Full Text] [Related]
15. Improving Long-term Monitoring of Contaminated Groundwater at Sites where Attenuation-based Remedies are Deployed. Denham ME; Amidon MB; Wainwright HM; Dafflon B; Ajo-Franklin J; Eddy-Dilek CA Environ Manage; 2020 Dec; 66(6):1142-1161. PubMed ID: 33098454 [TBL] [Abstract][Full Text] [Related]
16. Identifying remedial solutions through optimal bioremediation design under real-world field conditions. Verardo E; Atteia O; Rouvreau L; Siade A; Prommer H J Contam Hydrol; 2021 Feb; 237():103751. PubMed ID: 33360418 [TBL] [Abstract][Full Text] [Related]
17. A data-driven modeling approach for the sustainable remediation of persistent arsenic (As) groundwater contamination in a fractured rock aquifer through a groundwater recirculation well (IEG-GCW®). Ciampi P; Esposito C; Bartsch E; Alesi EJ; Rehner G; Morettin P; Pellegrini M; Olivieri S; Ranaldo M; Liali G; Papini MP Environ Res; 2023 Jan; 217():114827. PubMed ID: 36410461 [TBL] [Abstract][Full Text] [Related]
18. Kinetic constraints on theIn-situ remediation of soils contaminated with organic chemicals. Beck AJ; Jones KC Environ Sci Pollut Res Int; 1995 Jul; 2(4):244-52. PubMed ID: 24234698 [TBL] [Abstract][Full Text] [Related]
19. Contaminant Back Diffusion from Low-Conductivity Matrices: Case Studies of Remedial Strategies. Blue J; Boving T; Tuccillo ME; Koplos J; Rose J; Brooks M; Burden D Water (Basel); 2023 Feb; 15(3):1-31. PubMed ID: 36959915 [TBL] [Abstract][Full Text] [Related]
20. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Obiri-Nyarko F; Grajales-Mesa SJ; Malina G Chemosphere; 2014 Sep; 111():243-59. PubMed ID: 24997925 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]