These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38336092)

  • 1. Intracellular neural control of an active feeding structure in Aplysia using a carbon fiber electrode array.
    Huan Y; Tibbetts BN; Richie JM; Chestek CA; Chiel HJ
    J Neurosci Methods; 2024 Apr; 404():110077. PubMed ID: 38336092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon fiber electrodes for intracellular recording and stimulation.
    Huan Y; Gill JP; Fritzinger JB; Patel PR; Richie JM; Della Valle E; Weiland JD; Chestek CA; Chiel HJ
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34826825
    [No Abstract]   [Full Text] [Related]  

  • 3. Combining voltage-sensitive dye, carbon fiber array, and extracellular nerve electrodes using a 3-D printed recording chamber and manipulators.
    Neveu CL; Huan Y; Momohara Y; Patel PR; Chiel HJ; Chestek CA; Byrne JH
    J Neurosci Methods; 2023 Aug; 396():109935. PubMed ID: 37524249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-density carbon fiber neural recording array technology.
    Massey TL; Santacruz SR; Hou JF; Pister KSJ; Carmena JM; Maharbiz MM
    J Neural Eng; 2019 Feb; 16(1):016024. PubMed ID: 30524060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vitro preparation for eliciting and recording feeding motor programs with physiological movements in Aplysia californica.
    McManus JM; Lu H; Chiel HJ
    J Vis Exp; 2012 Dec; (70):e4320. PubMed ID: 23242322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-Fiber Based Microelectrode Array Embedded with a Biodegradable Silk Support for In Vivo Neural Recording.
    Lee Y; Kong C; Chang JW; Jun SB
    J Korean Med Sci; 2019 Jan; 34(4):e24. PubMed ID: 30686948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings.
    Patel PR; Na K; Zhang H; Kozai TD; Kotov NA; Yoon E; Chestek CA
    J Neural Eng; 2015 Aug; 12(4):046009. PubMed ID: 26035638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detachable glass microelectrodes for recording action potentials in active moving organs.
    Barbic M; Moreno A; Harris TD; Kay MW
    Am J Physiol Heart Circ Physiol; 2017 Jun; 312(6):H1248-H1259. PubMed ID: 28476925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sealing cultured invertebrate neurons to embedded dish electrodes facilitates long-term stimulation and recording.
    Regehr WG; Pine J; Cohan CS; Mischke MD; Tank DW
    J Neurosci Methods; 1989 Nov; 30(2):91-106. PubMed ID: 2586157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MEMS-Actuated Carbon Fiber Microelectrode for Neural Recording.
    Zoll RS; Schindler CB; Massey TL; Drew DS; Maharbiz MM; Pister KSJ
    IEEE Trans Nanobioscience; 2019 Apr; 18(2):234-239. PubMed ID: 30892226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible microelectrode array for interfacing with the surface of neural ganglia.
    Sperry ZJ; Na K; Parizi SS; Chiel HJ; Seymour J; Yoon E; Bruns TM
    J Neural Eng; 2018 Jun; 15(3):036027. PubMed ID: 29521279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability of swallowing performance in intact, freely feeding aplysia.
    Lum CS; Zhurov Y; Cropper EC; Weiss KR; Brezina V
    J Neurophysiol; 2005 Oct; 94(4):2427-46. PubMed ID: 15944235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-explant profiling of subcellular-scale carbon fiber intracortical electrodes and surrounding neurons enables modeling of recorded electrophysiology.
    Letner JG; Patel PR; Hsieh JC; Smith Flores IM; Della Valle E; Walker LA; Weiland JD; Chestek CA; Cai D
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36848679
    [No Abstract]   [Full Text] [Related]  

  • 14. Carbon fiber on polyimide ultra-microelectrodes.
    Gillis WF; Lissandrello CA; Shen J; Pearre BW; Mertiri A; Deku F; Cogan S; Holinski BJ; Chew DJ; White AE; Otchy TM; Gardner TJ
    J Neural Eng; 2018 Feb; 15(1):016010. PubMed ID: 28905812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular manganese enhanced MRI signals reflect the frequency of action potentials in Aplysia neurons.
    Svehla P; Bédécarrats A; Jahn C; Nargeot R; Ciobanu L
    J Neurosci Methods; 2018 Feb; 295():121-128. PubMed ID: 29248445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes.
    Hai A; Shappir J; Spira ME
    J Neurophysiol; 2010 Jul; 104(1):559-68. PubMed ID: 20427620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new technique for chronic single-unit extracellular recording in freely behaving animals using pipette electrodes.
    Warman EN; Chiel HJ
    J Neurosci Methods; 1995 Apr; 57(2):161-9. PubMed ID: 7609579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-small carbon fiber electrode recording site optimization and improved in vivo chronic recording yield.
    Welle EJ; Patel PR; Woods JE; Petrossians A; Della Valle E; Vega-Medina A; Richie JM; Cai D; Weiland JD; Chestek CA
    J Neural Eng; 2020 Apr; 17(2):026037. PubMed ID: 32209743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrode fabrication and implantation in Aplysia californica for multi-channel neural and muscular recordings in intact, freely behaving animals.
    Cullins MJ; Chiel HJ
    J Vis Exp; 2010 Jun; (40):. PubMed ID: 20543773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of an invertebrate animal model (
    Zhuo J; Gill JP; Jansen ED; Jenkins MW; Chiel HJ
    Front Neurosci; 2022; 16():1080027. PubMed ID: 36620467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.