These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38336092)

  • 21. Sharpened and Mechanically Durable Carbon Fiber Electrode Arrays for Neural Recording.
    Welle EJ; Woods JE; Jiman AA; Richie JM; Bottorff EC; Ouyang Z; Seymour JP; Patel PR; Bruns TM; Chestek CA
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():993-1003. PubMed ID: 34014825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A versatile all-channel stimulator for electrode arrays, with real-time control.
    Wagenaar DA; Potter SM
    J Neural Eng; 2004 Mar; 1(1):39-45. PubMed ID: 15876621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes.
    Vitale F; Summerson SR; Aazhang B; Kemere C; Pasquali M
    ACS Nano; 2015; 9(4):4465-74. PubMed ID: 25803728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved electrochemical detection of biogenic amines in Aplysia using base-hydrolyzed cellulose-coated carbon fiber microelectrodes.
    Marinesco S; Carew TJ
    J Neurosci Methods; 2002 May; 117(1):87-97. PubMed ID: 12084568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chronic in vivo stability assessment of carbon fiber microelectrode arrays.
    Patel PR; Zhang H; Robbins MT; Nofar JB; Marshall SP; Kobylarek MJ; Kozai TD; Kotov NA; Chestek CA
    J Neural Eng; 2016 Dec; 13(6):066002. PubMed ID: 27705958
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of a radula opener neuromuscular system in Aplysia.
    Evans CG; Rosen S; Kupfermann I; Weiss KR; Cropper EC
    J Neurophysiol; 1996 Aug; 76(2):1267-81. PubMed ID: 8871235
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synaptic plasticity and the analysis of the field-EPSP as well as the population spike using separate recording electrodes in the dentate gyrus in freely moving rats.
    Frey S; Frey JU
    J Neurosci Methods; 2009 Oct; 184(1):79-87. PubMed ID: 19643134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybrid diamond/ carbon fiber microelectrodes enable multimodal electrical/chemical neural interfacing.
    Hejazi MA; Tong W; Stacey A; Soto-Breceda A; Ibbotson MR; Yunzab M; Maturana MI; Almasi A; Jung YJ; Sun S; Meffin H; Fang J; Stamp MEM; Ganesan K; Fox K; Rifai A; Nadarajah A; Falahatdoost S; Prawer S; Apollo NV; Garrett DJ
    Biomaterials; 2020 Feb; 230():119648. PubMed ID: 31791841
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Slow depolarizing and hyperpolarizing currents which mediate bursting in Aplysia neurone R15.
    Adams WB
    J Physiol; 1985 Mar; 360():51-68. PubMed ID: 3989723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Search for cerebral G cluster neurons responding to taste stimulation with seaweed in Aplysia kurodai by the use of calcium imaging.
    Yoshida R; Nagahama T
    J Neurobiol; 2003 Jun; 55(3):299-314. PubMed ID: 12717700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanowires precisely grown on the ends of microwire electrodes permit the recording of intracellular action potentials within deeper neural structures.
    Ferguson JE; Boldt C; Puhl JG; Stigen TW; Jackson JC; Crisp KM; Mesce KA; Netoff TI; Redish AD
    Nanomedicine (Lond); 2012 Jun; 7(6):847-53. PubMed ID: 22475650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In-cell recordings by extracellular microelectrodes.
    Hai A; Shappir J; Spira ME
    Nat Methods; 2010 Mar; 7(3):200-2. PubMed ID: 20118930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microelectrode array for chronic deep-brain microstimulation and recording.
    McCreery D; Lossinsky A; Pikov V; Liu X
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):726-37. PubMed ID: 16602580
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A carbon-fiber electrode array for long-term neural recording.
    Guitchounts G; Markowitz JE; Liberti WA; Gardner TJ
    J Neural Eng; 2013 Aug; 10(4):046016. PubMed ID: 23860226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intracellular recordings from intramural neurons in the guinea pig urinary bladder.
    Hanani M; Maudlej N
    J Neurophysiol; 1995 Dec; 74(6):2358-65. PubMed ID: 8747198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monitoring changes in the intracellular calcium concentration and synaptic efficacy in the mollusc Aplysia.
    Ludwar BCh; Evans CG; Cropper EC
    J Vis Exp; 2012 Jul; (65):e3907. PubMed ID: 22824826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stable, long-term single-neuronal recording from the rat spinal cord with flexible carbon nanotube fiber electrodes.
    Liu X; Xu Z; Fu X; Liu Y; Jia H; Yang Z; Zhang J; Wei S; Duan X
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36108593
    [No Abstract]   [Full Text] [Related]  

  • 39. Construction and Implementation of Carbon Fiber Microelectrode Arrays for Chronic and Acute In Vivo Recordings.
    Reikersdorfer KN; Stacy AK; Bressler DA; Hayashi LS; Hengen KB; Van Hooser SD
    J Vis Exp; 2021 Aug; (174):. PubMed ID: 34424245
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.