BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38336140)

  • 21. Retention and transformation of exogenous Hg in acidic paddy soil under alternating anoxic and oxic conditions: Kinetic and mechanistic insights.
    Zhang Y; Wang X; Yang Y; Huang Y; Li X; Hu S; Liu K; Pang Y; Liu T; Li F
    Environ Pollut; 2023 Apr; 323():121335. PubMed ID: 36828356
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selenium decreases methylmercury and increases nutritional elements in rice growing in mercury-contaminated farmland.
    Li Y; Hu W; Zhao J; Chen Q; Wang W; Li B; Li YF
    Ecotoxicol Environ Saf; 2019 Oct; 182():109447. PubMed ID: 31325809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New insights into sulfur input induced methylmercury production and accumulation in paddy soil and rice.
    Li Y; Zhu N; Hu W; Liu YR; Jia W; Lin G; Li H; Li Y; Gao Y; Zhao J
    J Hazard Mater; 2023 Aug; 455():131602. PubMed ID: 37178535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of methylmercury accumulation in wheat and rice grown in straw-amended paddy soil.
    Wang Y; Chen Z; Wu Y; Zhong H
    Sci Total Environ; 2019 Dec; 697():134143. PubMed ID: 31476499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of peat and thiol-modified peat application on mercury (im)mobilization in mercury-polluted paddy soil.
    Yao C; He T
    Ecotoxicol Environ Saf; 2023 Apr; 254():114743. PubMed ID: 36905846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mercury in rice (Oryza sativa L.) and rice-paddy soils under long-term fertilizer and organic amendment.
    Tang Z; Fan F; Wang X; Shi X; Deng S; Wang D
    Ecotoxicol Environ Saf; 2018 Apr; 150():116-122. PubMed ID: 29272715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands.
    Man Y; Wang B; Wang J; Slaný M; Yan H; Li P; El-Naggar A; Shaheen SM; Rinklebe J; Feng X
    Environ Int; 2021 Aug; 153():106527. PubMed ID: 33784588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DOM influences Hg methylation in paddy soils across a Hg contamination gradient.
    Abdelhafiz MA; Liu J; Jiang T; Pu Q; Aslam MW; Zhang K; Meng B; Feng X
    Environ Pollut; 2023 Apr; 322():121237. PubMed ID: 36758923
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selenium-amended biochar mitigates inorganic mercury and methylmercury accumulation in rice (Oryza sativa L.).
    Lv W; Zhan T; Abdelhafiz MA; Feng X; Meng B
    Environ Pollut; 2021 Dec; 291():118259. PubMed ID: 34600068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Warming inhibits Hg
    Zhang Q; Pu Q; Hao Z; Liu J; Zhang K; Meng B; Feng X
    Sci Total Environ; 2024 Jun; 930():172832. PubMed ID: 38688367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of sulfate and selenite on mercury methylation in a mercury-contaminated rice paddy soil under anoxic conditions.
    Wang Y; Dang F; Zhong H; Wei Z; Li P
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4602-8. PubMed ID: 26520099
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of rice straw amendment on mercury methylation and nitrification in paddy soils.
    Liu YR; Dong JX; Han LL; Zheng YM; He JZ
    Environ Pollut; 2016 Feb; 209():53-9. PubMed ID: 26629646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Characteristics of Mercury Transformation in Soil and Accumulation in Rice Plants in an Acidic Purple Paddy Soil Area].
    Li YQ; Sun T; Deng H; Zhang C; Wang YM; Wang DY
    Huan Jing Ke Xue; 2018 May; 39(5):2472-2479. PubMed ID: 29965549
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.
    Wang YJ; Dang F; Zhao JT; Zhong H
    Environ Pollut; 2016 Jun; 213():232-239. PubMed ID: 26901075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochar affects methylmercury production and bioaccumulation in paddy soils: Insights from soil-derived dissolved organic matter.
    Zhang S; Wang M; Liu J; Tian S; Yang X; Xiao G; Xu G; Jiang T; Wang D
    J Environ Sci (China); 2022 Sep; 119():68-77. PubMed ID: 35934467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Response of methylmercury in paddy soil and paddy rice to pristine biochar: A meta-analysis and environmental implications.
    Tian X; Chai G; Xie Q; Li G
    Ecotoxicol Environ Saf; 2023 Jun; 257():114933. PubMed ID: 37099962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mobilization and methylation of mercury with sulfur addition in paddy soil: Implications for integrated water-sulfur management in controlling Hg accumulation in rice.
    Li Y; Lu C; Zhu N; Chao J; Hu W; Zhang Z; Wang Y; Liang L; Chen J; Xu D; Gao Y; Zhao J
    J Hazard Mater; 2022 May; 430():128447. PubMed ID: 35158248
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accumulation of total mercury and methylmercury in rice plants collected from different mining areas in China.
    Meng M; Li B; Shao JJ; Wang T; He B; Shi JB; Ye ZH; Jiang GB
    Environ Pollut; 2014 Jan; 184():179-86. PubMed ID: 24056187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic characteristics and predictive models of methylmercury production in paddy soils.
    Du S; Wang X; Zhang T; Ding C
    Environ Pollut; 2019 Oct; 253():424-428. PubMed ID: 31325887
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use smaller size of straw to alleviate mercury methylation and accumulation induced by straw incorporation in paddy field.
    Sun T; Wang Y; Li C; Huang J; Hua Y; Yue C; Chao H; Zhang D; Zhang Y; Wang D
    J Hazard Mater; 2022 Feb; 423(Pt A):127002. PubMed ID: 34474359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.