These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38336292)

  • 1. Transcription elongation mechanisms of RNA polymerases I, II, and III and their therapeutic implications.
    Jacobs RQ; Schneider DA
    J Biol Chem; 2024 Mar; 300(3):105737. PubMed ID: 38336292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining the divergent enzymatic properties of RNA polymerases I and II.
    Jacobs RQ; Ingram ZM; Lucius AL; Schneider DA
    J Biol Chem; 2021; 296():100051. PubMed ID: 33168625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meeting report for Odd Pols 2012.
    Roy-Engel AM; Moss T; Maraia RJ
    Gene; 2013 Aug; 526(1):1-6. PubMed ID: 23608169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Assay for RNA Polymerase I Transcription Elongation Sheds Light on the Evolutionary Divergence of Eukaryotic RNA Polymerases.
    Scull CE; Ingram ZM; Lucius AL; Schneider DA
    Biochemistry; 2019 Apr; 58(16):2116-2124. PubMed ID: 30912638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific interaction of the murine transcription termination factor TTF I with class-I RNA polymerases.
    Kuhn A; Bartsch I; Grummt I
    Nature; 1990 Apr; 344(6266):559-62. PubMed ID: 2181320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin-dependent regulation of RNA polymerases II and III activity throughout the transcription cycle.
    Jordán-Pla A; Gupta I; de Miguel-Jiménez L; Steinmetz LM; Chávez S; Pelechano V; Pérez-Ortín JE
    Nucleic Acids Res; 2015 Jan; 43(2):787-802. PubMed ID: 25550430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Escherichia coli rho factor induces release of yeast RNA polymerase II but not polymerase I or III.
    Lang WH; Platt T; Reeder RH
    Proc Natl Acad Sci U S A; 1998 Apr; 95(9):4900-5. PubMed ID: 9560200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abortive initiation by Saccharomyces cerevisiae RNA polymerase III.
    Bhargava P; Kassavetis GA
    J Biol Chem; 1999 Sep; 274(37):26550-6. PubMed ID: 10473618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription termination by the eukaryotic RNA polymerase III.
    Arimbasseri AG; Rijal K; Maraia RJ
    Biochim Biophys Acta; 2013; 1829(3-4):318-30. PubMed ID: 23099421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The RNA cleavage activity of RNA polymerase III is mediated by an essential TFIIS-like subunit and is important for transcription termination.
    Chédin S; Riva M; Schultz P; Sentenac A; Carles C
    Genes Dev; 1998 Dec; 12(24):3857-71. PubMed ID: 9869639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compromised RNA polymerase III complex assembly leads to local alterations of intergenic RNA polymerase II transcription in Saccharomyces cerevisiae.
    Wang Q; Nowak CM; Korde A; Oh DH; Dassanayake M; Donze D
    BMC Biol; 2014 Oct; 12():89. PubMed ID: 25348158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The yeast alpha 2 protein can repress transcription by RNA polymerases I and II but not III.
    Herschbach BM; Johnson AD
    Mol Cell Biol; 1993 Jul; 13(7):4029-38. PubMed ID: 8321210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variants of the TATA-binding protein can distinguish subsets of RNA polymerase I, II, and III promoters.
    Schultz MC; Reeder RH; Hahn S
    Cell; 1992 May; 69(4):697-702. PubMed ID: 1586948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of eukaryotic RNA polymerase III transcription termination.
    Nielsen S; Yuzenkova Y; Zenkin N
    Science; 2013 Jun; 340(6140):1577-80. PubMed ID: 23812715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of the basic repeat domain of TATA-binding protein (TBP) in transcription by RNA polymerases I, II, and III.
    Kim TK; Roeder RG
    J Biol Chem; 1994 Feb; 269(7):4891-4. PubMed ID: 8106461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function analysis of RNA polymerases I and III.
    Werner M; Thuriaux P; Soutourina J
    Curr Opin Struct Biol; 2009 Dec; 19(6):740-5. PubMed ID: 19896367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of backtrack recovery by RNA polymerases I and II.
    Lisica A; Engel C; Jahnel M; Roldán É; Galburt EA; Cramer P; Grill SW
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):2946-51. PubMed ID: 26929337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A specific assay for yeast RNA polymerases in crude cell extracts.
    Ruet A; Sentenac A; Fromageot P
    Eur J Biochem; 1978 Oct; 90(2):325-30. PubMed ID: 361402
    [No Abstract]   [Full Text] [Related]  

  • 19. Widespread use of TATA elements in the core promoters for RNA polymerases III, II, and I in fission yeast.
    Hamada M; Huang Y; Lowe TM; Maraia RJ
    Mol Cell Biol; 2001 Oct; 21(20):6870-81. PubMed ID: 11564871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetics of eukaryotic RNA polymerases I, II, and III.
    Archambault J; Friesen JD
    Microbiol Rev; 1993 Sep; 57(3):703-24. PubMed ID: 8246845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.