BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38336321)

  • 1. Fabrication of chitin based hydrophilic hyper-crosslinked porous polymer for efficiently removing bisphenol A from water.
    Li S; Li Z; Dong Y; Wang Q; Wang C; Wang Z; Wu Q
    Int J Biol Macromol; 2024 Mar; 262(Pt 1):129963. PubMed ID: 38336321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of amino-functionalized triazine-based hyper-crosslinked polymer for efficient adsorption of endocrine disruptors.
    Wang C; Li M; Chen X; Wang Q; Li S; Liu W; Hao L; Wu Q; Shi X
    Talanta; 2024 Jan; 266(Pt 2):125142. PubMed ID: 37660619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and preparation of functional azo linked polymers for the adsorptive removal of bisphenol A from water: Performance and analysis of the mechanism.
    Dong S; Rene ER; Zhao L; Xiaoxiu L; Ma W
    Environ Res; 2022 Apr; 206():112601. PubMed ID: 34973200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aqueous adsorption of bisphenol A over a porphyrinic porous organic polymer.
    Lee MY; Ahmed I; Yu K; Lee CS; Kang KK; Jang MS; Ahn WS
    Chemosphere; 2021 Feb; 265():129161. PubMed ID: 33302201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochar supported Pseudomonas putida based globules for effective removal of Bisphenol A with a practical approach.
    Ratheesh A; Shibli SMA
    Chemosphere; 2024 Aug; 361():142496. PubMed ID: 38825245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrathin porous carbon nanosheet as an efficient adsorbent for the removal of bisphenol A: The overlooked role of topological defects.
    Wang T; Zhang H; Liu Y; Zhang L; Xing B
    Chemosphere; 2022 Nov; 306():135549. PubMed ID: 35780996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfonated polyHIPE/nanoclay composites with hierarchically porous structure for efficient removal of endocrine-disrupting hormone from aqueous solution.
    Bilgin Simsek E; Mert HH; Sözbir M; Mert EH
    Water Environ Res; 2023 May; 95(5):e10875. PubMed ID: 37148542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. E. coli@UiO-67 composites as a recyclable adsorbent for bisphenol A removal.
    Xiang Y; Yan H; Zheng B; Faheem A; Chen W; Hu Y
    Chemosphere; 2021 May; 270():128672. PubMed ID: 33109363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen-rich triazine-based porous polymers for efficient removal of bisphenol micropollutants.
    Yang X; Zhang X; Chen X; Gao X; Liu Y; Weng J; Yang S; Gui T; Chen X; Zhao R; Liu J
    Chemosphere; 2022 Nov; 307(Pt 3):135919. PubMed ID: 35952784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chitin-based magnetic hyper-cross-linked polymer for highly efficient enrichment of neonicotinoids in lemon juice and tomatoes.
    Li M; Dong Y; Wang Q; Hao L; Liu W; Wang C; Wang Z; Wu Q
    Int J Biol Macromol; 2024 Jan; 256(Pt 2):128423. PubMed ID: 38008138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose based hyper-crosslinked polymer for efficiently recovering valuable materials from PO/SM wastewater.
    Wu K; Chai K; Zhou L; Duan Z; Wu H; Huang Z; Li D; Tan Z; Shen F; Wei Z; Ji H
    Int J Biol Macromol; 2021 Dec; 193(Pt A):71-80. PubMed ID: 34637817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient adsorption of methyl orange and methyl blue dyes by a novel triptycene-based hyper-crosslinked porous polymer.
    He Y; Bao W; Hua Y; Guo Z; Fu X; Na B; Yuan D; Peng C; Liu H
    RSC Adv; 2022 Feb; 12(9):5587-5594. PubMed ID: 35425553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural phenol-inspired porous polymers for efficient removal of tetracycline: Experimental and engineering analysis.
    Liu Y; Zhou H; Zhou X; Jin C; Liu G; Huo S; Chu F; Kong Z
    Chemosphere; 2023 Mar; 316():137798. PubMed ID: 36634714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Twisted molecule-based hyper-crosslinked porous polymers for rapid and efficient removal of organic micropollutants from water.
    Jia Z; Pan J; Tian C; Yuan D
    RSC Adv; 2018 Oct; 8(64):36812-36818. PubMed ID: 35558961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bisphenol A removal from water by biomass-based carbon: isotherms, kinetics and thermodynamics studies.
    Juhola R; Runtti H; Kangas T; Hu T; Romar H; Tuomikoski S
    Environ Technol; 2020 Mar; 41(8):971-980. PubMed ID: 30136614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defect-rich porous carbon with anti-interference capability for adsorption of bisphenol A via long-range hydrophobic interaction synergized with short-range dispersion force.
    Shao P; Pei J; Tang H; Yu S; Yang L; Shi H; Yu K; Zhang K; Luo X
    J Hazard Mater; 2021 Feb; 403():123705. PubMed ID: 32829230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carboxyl-functionalized polyimides for efficient bisphenol A removal: Influence of wettability and porosity on adsorption capacity.
    AlDawhi ZA; BinSharfan II; Abdulhamid MA
    Chemosphere; 2023 Feb; 313():137347. PubMed ID: 36427579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption and catalytic degradation of bisphenol A and p-chlorophenol by magnetic carbon nanotubes.
    Gao H; Han X; Wang R; Zhu K; Han R
    Environ Res; 2023 Aug; 231(Pt 3):116314. PubMed ID: 37270083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient removal of uranium (VI) from water by a hyper-cross-linked polymer adsorbent modified with polyethylenimine via phosphoramidate linkers.
    Tian Y; Liu L; Wang Y; Ma F; Zhang C; Dong H
    Environ Res; 2023 Aug; 231(Pt 2):116160. PubMed ID: 37209988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient recovery of bisphenol A from aqueous solution using K
    Wang K; Qin X; Chai K; Wei Z; Deng F; Liao B; Wu J; Shen F; Zhang Z
    Environ Sci Pollut Res Int; 2023 May; 30(25):67758-67770. PubMed ID: 37115443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.