These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38336974)

  • 21. LSW-Net: Lightweight Deep Neural Network Based on Small-World properties for Spine MR Image Segmentation.
    He S; Li Q; Li X; Zhang M
    J Magn Reson Imaging; 2023 Dec; 58(6):1762-1776. PubMed ID: 37118994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SeUneter: Channel attentive U-Net for instance segmentation of the cervical spine MRI medical image.
    Zhang X; Yang Y; Shen YW; Li P; Zhong Y; Zhou J; Zhang KR; Shen CY; Li Y; Zhang MF; Pan LH; Ma LT; Liu H
    Front Physiol; 2022; 13():1081441. PubMed ID: 36561215
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-input adaptive neural network for automatic detection of cervical vertebral landmarks on X-rays.
    Wang Y; Huang L; Wu M; Liu S; Jiao J; Bai T
    Comput Biol Med; 2022 Jul; 146():105576. PubMed ID: 35576823
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automatic vertebrae localization and segmentation in CT with a two-stage Dense-U-Net.
    Cheng P; Yang Y; Yu H; He Y
    Sci Rep; 2021 Nov; 11(1):22156. PubMed ID: 34772972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spine-GFlow: A hybrid learning framework for robust multi-tissue segmentation in lumbar MRI without manual annotation.
    Kuang X; Cheung JPY; Wong KK; Lam WY; Lam CH; Choy RW; Cheng CP; Wu H; Yang C; Wang K; Li Y; Zhang T
    Comput Med Imaging Graph; 2022 Jul; 99():102091. PubMed ID: 35803034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of a hybrid pipeline for automated segmentation of solid lesions based on mathematical algorithms and deep learning.
    Burrows L; Chen K; Guo W; Hossack M; McWilliams RG; Torella F
    Sci Rep; 2022 Aug; 12(1):14216. PubMed ID: 35987824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic segmentation of organs at risk and tumors in CT images of lung cancer from partially labelled datasets with a semi-supervised conditional nnU-Net.
    Zhang G; Yang Z; Huo B; Chai S; Jiang S
    Comput Methods Programs Biomed; 2021 Nov; 211():106419. PubMed ID: 34563895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of U-Net models in automated cervical spine and cranial bone segmentation using X-ray images for traumatic atlanto-occipital dislocation diagnosis.
    Shim JH; Kim WS; Kim KG; Yee GT; Kim YJ; Jeong TS
    Sci Rep; 2022 Dec; 12(1):21438. PubMed ID: 36509842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Convolutional neural network for automated mass segmentation in mammography.
    Abdelhafiz D; Bi J; Ammar R; Yang C; Nabavi S
    BMC Bioinformatics; 2020 Dec; 21(Suppl 1):192. PubMed ID: 33297952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiscale unsupervised domain adaptation for automatic pancreas segmentation in CT volumes using adversarial learning.
    Zhu Y; Hu P; Li X; Tian Y; Bai X; Liang T; Li J
    Med Phys; 2022 Sep; 49(9):5799-5818. PubMed ID: 35833617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lumbar spine segmentation method based on deep learning.
    Lu H; Li M; Yu K; Zhang Y; Yu L
    J Appl Clin Med Phys; 2023 Jun; 24(6):e13996. PubMed ID: 37082799
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CAM-Wnet: An effective solution for accurate pulmonary embolism segmentation.
    Liu Z; Yuan H; Wang H
    Med Phys; 2022 Aug; 49(8):5294-5303. PubMed ID: 35609213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated measurements of interscrew angles in vertebral body tethering patients with deep learning.
    Mulford KL; Regan C; Nolte CP; Pinter ZW; Milbrandt TA; Larson AN
    Spine J; 2024 Feb; 24(2):333-339. PubMed ID: 37774982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Convolutional neural network-based automated segmentation and labeling of the lumbar spine X-ray.
    Kónya S; Natarajan TS; Allouch H; Nahleh KA; Dogheim OY; Boehm H
    J Craniovertebr Junction Spine; 2021; 12(2):136-143. PubMed ID: 34194159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iterative fully convolutional neural networks for automatic vertebra segmentation and identification.
    Lessmann N; van Ginneken B; de Jong PA; Išgum I
    Med Image Anal; 2019 Apr; 53():142-155. PubMed ID: 30771712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated Vertebral Segmentation and Measurement of Vertebral Compression Ratio Based on Deep Learning in X-Ray Images.
    Kim DH; Jeong JG; Kim YJ; Kim KG; Jeon JY
    J Digit Imaging; 2021 Aug; 34(4):853-861. PubMed ID: 34236562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Segmentation of bone CT images and assessment of bone structure using measures of complexity.
    Saparin P; Thomsen JS; Kurths J; Beller G; Gowin W
    Med Phys; 2006 Oct; 33(10):3857-73. PubMed ID: 17089850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accurate and robust auto-segmentation of head and neck organ-at-risks based on a novel CNN fine-tuning workflow.
    Luan S; Wu K; Wu Y; Zhu B; Wei W; Xue X
    J Appl Clin Med Phys; 2024 Jan; 25(1):e14248. PubMed ID: 38128058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.