BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38337019)

  • 1. Genome replication in space and time.
    Koren A
    Nat Rev Genet; 2024 May; 25(5):308. PubMed ID: 38337019
    [No Abstract]   [Full Text] [Related]  

  • 2. The chromatin backdrop of DNA replication: lessons from genetics and genome-scale analyses.
    Conner AL; Aladjem MI
    Biochim Biophys Acta; 2012 Jul; 1819(7):794-801. PubMed ID: 22342530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Life Cycle of the Vaccinia Virus Genome.
    Greseth MD; Traktman P
    Annu Rev Virol; 2022 Sep; 9(1):239-259. PubMed ID: 35584888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Protective Role of Dormant Origins in Response to Replicative Stress.
    Courtot L; Hoffmann JS; Bergoglio V
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30424570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA replication and chromosome positioning throughout the interphase in three-dimensional space of plant nuclei.
    Němečková A; Koláčková V; Vrána J; Doležel J; Hřibová E
    J Exp Bot; 2020 Oct; 71(20):6262-6272. PubMed ID: 32805034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scRepli-Seq: A Powerful Tool to Study Replication Timing and Genome Instability.
    Sakamoto M; Hori S; Yamamoto A; Yoneda T; Kuriya K; Takebayashi SI
    Cytogenet Genome Res; 2022; 162(4):161-170. PubMed ID: 36455525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolution of the temporal program of genome replication.
    Agier N; Delmas S; Zhang Q; Fleiss A; Jaszczyszyn Y; van Dijk E; Thermes C; Weigt M; Cosentino-Lagomarsino M; Fischer G
    Nat Commun; 2018 Jun; 9(1):2199. PubMed ID: 29875360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ubiquitin-dependent DNA damage bypass is separable from genome replication.
    Daigaku Y; Davies AA; Ulrich HD
    Nature; 2010 Jun; 465(7300):951-5. PubMed ID: 20453836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control over DNA replication in time and space.
    Symeonidou IE; Taraviras S; Lygerou Z
    FEBS Lett; 2012 Aug; 586(18):2803-12. PubMed ID: 22841721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replication and transcription: shaping the landscape of the genome.
    Chakalova L; Debrand E; Mitchell JA; Osborne CS; Fraser P
    Nat Rev Genet; 2005 Sep; 6(9):669-77. PubMed ID: 16094312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualizing the replicating HSV-1 virus using STED super-resolution microscopy.
    Li Z; Fang C; Su Y; Liu H; Lang F; Li X; Chen G; Lu D; Zhou J
    Virol J; 2016 Apr; 13():65. PubMed ID: 27062411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin and Nuclear Architecture: Shaping DNA Replication in 3D.
    Nathanailidou P; Taraviras S; Lygerou Z
    Trends Genet; 2020 Dec; 36(12):967-980. PubMed ID: 32713597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eukaryotic replication origins: control in space and time.
    Diller JD; Raghuraman MK
    Trends Biochem Sci; 1994 Aug; 19(8):320-5. PubMed ID: 7940676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global organization of replication time zones of the mouse genome.
    Farkash-Amar S; Lipson D; Polten A; Goren A; Helmstetter C; Yakhini Z; Simon I
    Genome Res; 2008 Oct; 18(10):1562-70. PubMed ID: 18669478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome.
    Schwaiger M; Stadler MB; Bell O; Kohler H; Oakeley EJ; Schübeler D
    Genes Dev; 2009 Mar; 23(5):589-601. PubMed ID: 19270159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide estimation of firing efficiencies of origins of DNA replication from time-course copy number variation data.
    Luo H; Li J; Eshaghi M; Liu J; Karuturi RK
    BMC Bioinformatics; 2010 May; 11():247. PubMed ID: 20462459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution replication profiles define the stochastic nature of genome replication initiation and termination.
    Hawkins M; Retkute R; Müller CA; Saner N; Tanaka TU; de Moura AP; Nieduszynski CA
    Cell Rep; 2013 Nov; 5(4):1132-41. PubMed ID: 24210825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and mathematical insights on the interactions between poliovirus and a defective interfering genome.
    Shirogane Y; Rousseau E; Voznica J; Xiao Y; Su W; Catching A; Whitfield ZJ; Rouzine IM; Bianco S; Andino R
    PLoS Pathog; 2021 Sep; 17(9):e1009277. PubMed ID: 34570820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of Chikungunya virus genome replication by targeting essential RNA structures within the virus genome.
    Prosser O; Stonehouse NJ; Tuplin A
    Antiviral Res; 2023 Mar; 211():105523. PubMed ID: 36603772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random replication of the inactive X chromosome.
    Koren A; McCarroll SA
    Genome Res; 2014 Jan; 24(1):64-9. PubMed ID: 24065775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.