These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38337119)

  • 21. Economic and environmental feasibility of hydrometallurgical process for recycling waste mobile phones.
    Liu J; Xu H; Zhang L; Liu CT
    Waste Manag; 2020 Jun; 111():41-50. PubMed ID: 32464524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Research on Hazardous Waste Removal Management: Identification of the Hazardous Characteristics of Fluid Catalytic Cracking Spent Catalysts.
    Fu H; Chen Y; Liu T; Zhu X; Yang Y; Song H
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33920910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential prediction and coupling relationship revealing for recovery of platinum group metals from spent auto-exhaust catalysts based on machine learning.
    Liu Y; Xu Z
    J Environ Manage; 2024 Aug; 365():121533. PubMed ID: 38917541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioleaching of metals from spent refinery petroleum catalyst using moderately thermophilic bacteria: effect of particle size.
    Srichandan H; Singh S; Pathak A; Kim DJ; Lee SW; Heyes G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(7):807-18. PubMed ID: 24679088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-efficiency recovery of valuable metals from spent lithium-ion batteries: Optimization of SO
    Qing J; Wu X; Zeng L; Guan W; Cao Z; Li Q; Wang M; Zhang G; Wu S
    J Environ Manage; 2024 Apr; 356():120729. PubMed ID: 38537464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recovery of heavy metals and stabilization of spent hydrotreating catalyst using a glass-ceramic matrix.
    Sun DD; Tay JH; Cheong HK; Leung DL; Qian G
    J Hazard Mater; 2001 Oct; 87(1-3):213-23. PubMed ID: 11566411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hazardous waste to materials: recovery of molybdenum and vanadium from acidic leach liquor of spent hydroprocessing catalyst using alamine 308.
    Sahu KK; Agrawal A; Mishra D
    J Environ Manage; 2013 Aug; 125():68-73. PubMed ID: 23644591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of the economic recycling potential of a glycolysis treatment of rigid polyurethane foam waste: A case study from Thailand.
    Kanchanapiya P; Intaranon N; Tantisattayakul T
    J Environ Manage; 2021 Feb; 280():111638. PubMed ID: 33293164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recovery of nickel and preparation of ferronickel alloy from spent petroleum catalyst via cooperative smelting-vitrification process with coal fly ash.
    Sun S; Yang K; Liu C; Tu G; Xiao F
    Environ Technol; 2024 Apr; 45(11):2108-2118. PubMed ID: 34727838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal recovery from spent refinery catalysts by means of biotechnological strategies.
    Beolchini F; Fonti V; Ferella F; Vegliò F
    J Hazard Mater; 2010 Jun; 178(1-3):529-34. PubMed ID: 20167424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A combination of solvent extraction and freeze thaw for oil recovery from petroleum refinery wastewater treatment pond sludge.
    Hu G; Li J; Hou H
    J Hazard Mater; 2015; 283():832-40. PubMed ID: 25464326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergistic utilization of industrial solid wastes: Extraction of valuable metals from tungsten leaching residue by photovoltaic sawing waste.
    Li M; Huang L; Chen W; Huang Z; Wang H; Liu C; Luo X; Barati M
    Waste Manag; 2024 Jul; 184():10-19. PubMed ID: 38788498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of spent nickel-metal hydride batteries and a preliminary economic evaluation of the recovery processes.
    Lin SL; Huang KL; Wang IC; Chou IC; Kuo YM; Hung CH; Lin C
    J Air Waste Manag Assoc; 2016 Mar; 66(3):296-306. PubMed ID: 26651506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method.
    Park KH; Mohapatra D; Reddy BR
    J Hazard Mater; 2006 Nov; 138(2):311-6. PubMed ID: 16860466
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metals smelting-collection method for recycling of platinum group metals from waste catalysts: A mini review.
    Liu C; Sun S; Zhu X; Tu G
    Waste Manag Res; 2021 Jan; 39(1):43-52. PubMed ID: 33198602
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A review of the valorization and management of industrial spent catalyst waste in the context of sustainable practice: The case of the State of Kuwait in parallel to European industry.
    Majed Al-Salem S; Constantinou A; Leeke GA; Hafeez S; Safdar T; Karam HJ; Al-Qassimi M; Al-Dhafeeri AT; Manos G; Arena U
    Waste Manag Res; 2019 Nov; 37(11):1127-1141. PubMed ID: 31571531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A facile method of treating spent catalysts via using solvent for recovering undamaged catalyst support.
    Abbas Z; Jung SM
    PLoS One; 2024; 19(1):e0296271. PubMed ID: 38166048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sustainable treatment of bimetallic (Ag-Pd/α-Al
    Choi S; Ilyas S; Hwang G; Kim H
    J Environ Manage; 2021 Aug; 291():112748. PubMed ID: 33971514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bio-refinery approach for spent coffee grounds valorization.
    Mata TM; Martins AA; Caetano NS
    Bioresour Technol; 2018 Jan; 247():1077-1084. PubMed ID: 28969966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.