These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38337287)

  • 1. Epoxy-Based Copper (Cu) Sintering Pastes for Enhanced Bonding Strength and Preventing Cu Oxidation after Sintering.
    Han SJ; Lee S; Jang KS
    Polymers (Basel); 2024 Jan; 16(3):. PubMed ID: 38337287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Sintering Conditions on the Mechanical Strength of Cu-Sintered Joints for High-Power Applications.
    Yoon JW; Back JH
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Conductive Cu-Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles.
    Liu J; Chen H; Ji H; Li M
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33289-33298. PubMed ID: 27934145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper Sintering Pastes with Various Polar Solvents and Acidic Activators.
    Lee S; Han SJ; Kim Y; Jang KS
    ACS Omega; 2023 Oct; 8(42):39135-39142. PubMed ID: 37901574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bonding Behavior and Quality of Pressureless Ag Sintering on (111)-Oriented Nanotwinned Cu Substrate in Ambient Air.
    Huang X; He W; Liang J; Yang HK; Zhou C; Liu ZQ
    Materials (Basel); 2024 Sep; 17(17):. PubMed ID: 39274812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Temperature Sintering of Ag Composite Pastes with Different Metal Organic Decomposition Additions.
    Xu Z; Liu X; Li J; Sun R; Liu L
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging.
    Ji H; Zhou J; Liang M; Lu H; Li M
    Ultrason Sonochem; 2018 Mar; 41():375-381. PubMed ID: 29137764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal interface material with graphene enhanced sintered copper for high temperature power electronics.
    Deng S; Zhang X; Xiao GD; Zhang K; He X; Xin S; Liu X; Zhong A; Chai Y
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33910177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface and Interface Designs in Copper-Based Conductive Inks for Printed/Flexible Electronics.
    Tomotoshi D; Kawasaki H
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32867267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dual sintering with laser irradiation and thermal treatment on printed copper nanoparticle patterns.
    Chowdhury R; Young K; Poche TJ; Jang S
    Nanotechnology; 2023 Aug; 34(42):. PubMed ID: 37437557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu-Ag Nanocomposite Pastes for Low Temperature Bonding and Flexible Interlayer-Interconnections.
    Lu YC; Liao WH; Wu TJ; Yasuda K; Song JM
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep-Sintered Copper Tracks for Thermal Oxidation Resistance Using Large Pulsed Electron Beam.
    Hwang Y; Kim J; Yim C; Park HW
    ACS Omega; 2021 Jul; 6(29):19134-19143. PubMed ID: 34337251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic enhancing effect for mechanical and electrical properties of tungsten copper composites using spark plasma infiltrating sintering of copper-coated graphene.
    Chen W; Dong L; Wang J; Zuo Y; Ren S; Fu Y
    Sci Rep; 2017 Dec; 7(1):17836. PubMed ID: 29259287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Preparation of Ag Agglomerates Paste with Unique Sintering Behavior at Low Temperature.
    Li J; Xu Y; Meng Y; Yin Z; Zhao X; Wang Y; Suga T
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34066359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Pressure-Assisted Large-Area (>2400 mm
    Xue J; Li X
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Cu@Ag Micro/Nanoparticle Hybrid Paste and Its Rapid Sintering Technique via Electromagnetic Induction for High-Power Electronics.
    Wu Z; Liu W; Feng J; Wen Z; Zhang X; Wang X; Wang C; Tian Y
    ACS Omega; 2023 Aug; 8(34):31021-31029. PubMed ID: 37663465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Nano Copper on the Densification of Spark Plasma Sintered W-Cu Composites.
    Madhur V; Srikanth M; Annamalai AR; Muthuchamy A; Agrawal DK; Jen CP
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33562766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on the Attainment of High-Density 316L Stainless Steel with Selective Laser Sintering.
    Zhu P; He X; Guan H; Zhang Z; Zhang T; Qu X
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interdiffusion and Intermetallic Compounds at Al/Cu Interfaces in Al-50vol.%Cu Composite Prepared by Solid-State Sintering.
    Kim D; Kim K; Kwon H
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure and Enhanced Properties of Copper-Vanadium Nanocomposites Obtained by Powder Metallurgy.
    Wang Y; Wang J; Zou H; Wang Y; Ran X
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30678212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.