BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38337925)

  • 21. [Application of ANFIS in in-situ measured hyperspectral data for vegetation chlorophyll content estimation].
    Yao FQ; Zhang ZH; Yang RY; Sun JW; Wang HJ; Ren SG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jul; 30(7):1834-8. PubMed ID: 20827981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved multivariate modeling for soil organic matter content estimation using hyperspectral indexes and characteristic bands.
    Zhao MS; Wang T; Lu Y; Wang S; Wu Y
    PLoS One; 2023; 18(6):e0286825. PubMed ID: 37315071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components.
    Riccardi M; Mele G; Pulvento C; Lavini A; d'Andria R; Jacobsen SE
    Photosynth Res; 2014 Jun; 120(3):263-72. PubMed ID: 24442792
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-Invasive Assessment, Classification, and Prediction of Biophysical Parameters Using Reflectance Hyperspectroscopy.
    Falcioni R; Santos GLAAD; Crusiol LGT; Antunes WC; Chicati ML; Oliveira RB; Demattê JAM; Nanni MR
    Plants (Basel); 2023 Jul; 12(13):. PubMed ID: 37447089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Best hyperspectral indices for assessing leaf chlorophyll content in a degraded temperate vegetation.
    Peng Y; Fan M; Wang Q; Lan W; Long Y
    Ecol Evol; 2018 Jul; 8(14):7068-7078. PubMed ID: 30073068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nondestructive detection of rape leaf chlorophyll level based on Vis-NIR spectroscopy.
    Liu J; Han J; Chen X; Shi L; Zhang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117202. PubMed ID: 31181506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Inversion of vegetation canopy's chlorophyll content based on airborne hyperspectral image].
    Li MZ; Zhao XH; Liu Y; Lu W; Dong S; Meng L
    Ying Yong Sheng Tai Xue Bao; 2013 Jan; 24(1):177-82. PubMed ID: 23718007
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Applying spectral fractal dimension index to predict the SPAD value of rice leaves under bacterial blight disease stress.
    Cao Y; Xu H; Song J; Yang Y; Hu X; Wiyao KT; Zhai Z
    Plant Methods; 2022 May; 18(1):67. PubMed ID: 35585547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hyperspectral Leaf Reflectance as Proxy for Photosynthetic Capacities: An Ensemble Approach Based on Multiple Machine Learning Algorithms.
    Fu P; Meacham-Hensold K; Guan K; Bernacchi CJ
    Front Plant Sci; 2019; 10():730. PubMed ID: 31214235
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of Stem Rust Disease in Wheat Fields by Drone Hyperspectral Imaging.
    Abdulridha J; Min A; Rouse MN; Kianian S; Isler V; Yang C
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate estimation of sorghum crop water content under different water stress levels using machine learning and hyperspectral data.
    Tunca E; Köksal ES; Öztürk E; Akay H; Çetin Taner S
    Environ Monit Assess; 2023 Jun; 195(7):877. PubMed ID: 37353582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimating the frost damage index in lettuce using UAV-based RGB and multispectral images.
    Liu Y; Ban S; Wei S; Li L; Tian M; Hu D; Liu W; Yuan T
    Front Plant Sci; 2023; 14():1242948. PubMed ID: 38239223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Research on Accuracy and Stability of Inversing Vegetation Chlorophyll Content by Spectral Index Method].
    Jiang HL; Yang H; Chen XP; Wang SD; Li XK; Liu K; Cen Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Apr; 35(4):975-81. PubMed ID: 26197586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chlorophyll content estimation in an open-canopy conifer forest with Sentinel-2A and hyperspectral imagery in the context of forest decline.
    Zarco-Tejada PJ; Hornero A; Beck PSA; Kattenborn T; Kempeneers P; Hernández-Clemente R
    Remote Sens Environ; 2019 Mar; 223():320-335. PubMed ID: 31007289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Estimation of Winter Wheat Leaf Nitrogen Accumulation using Machine Learning Algorithm and Visible Spectral].
    Cui RX; Liu YD; Fu JD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1837-42. PubMed ID: 30052402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inversion of chlorophyll content under the stress of leaf mite for jujube based on model PSO-ELM method.
    Lu J; Qiu H; Zhang Q; Lan Y; Wang P; Wu Y; Mo J; Chen W; Niu H; Wu Z
    Front Plant Sci; 2022; 13():1009630. PubMed ID: 36247579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unique contributions of chlorophyll and nitrogen to predict crop photosynthetic capacity from leaf spectroscopy.
    Wang S; Guan K; Wang Z; Ainsworth EA; Zheng T; Townsend PA; Li K; Moller C; Wu G; Jiang C
    J Exp Bot; 2021 Feb; 72(2):341-354. PubMed ID: 32937655
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated hyperspectral vegetation index derivation using a hyperparameter optimisation framework for high-throughput plant phenotyping.
    Koh JCO; Banerjee BP; Spangenberg G; Kant S
    New Phytol; 2022 Mar; 233(6):2659-2670. PubMed ID: 34997968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Application of stationary wavelet transformation to winter wheat SPAD hyperspectral monitoring].
    Yao FQ; Cai HJ; Sun JW; Qiao W
    Ying Yong Sheng Tai Xue Bao; 2015 Jul; 26(7):2139-45. PubMed ID: 26710643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Dual NDVI Ratio Vegetation Index: A Kind of Vegetation Index Assessing Leaf Carotenoid Content Based on Leaf Optical Properties Model].
    Wang H; Shi R; Liu PD; Gao W
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jul; 36(7):2189-94. PubMed ID: 30035980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.