These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38338369)

  • 1. Comprehensive Investigation of Ginsenosides in the Steamed
    Fan J; Liu F; Ji W; Wang X; Li L
    Molecules; 2024 Jan; 29(3):. PubMed ID: 38338369
    [No Abstract]   [Full Text] [Related]  

  • 2. UPLC-Q-TOF-MS/MS Analysis for Steaming Times-dependent Profiling of Steamed Panax quinquefolius and Its Ginsenosides Transformations Induced by Repetitious Steaming.
    Sun BS; Xu MY; Li Z; Wang YB; Sung CK
    J Ginseng Res; 2012 Jul; 36(3):277-90. PubMed ID: 23717129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An innovative processing driven efficient transformation of rare ginsenosides enhances anti-platelet aggregation potency of notoginseng by integrated analyses of processing-(chemical) profiling-pharmacodynamics.
    Fan W; Liao Q; Fan L; Li Q; Liu L; Wang Z; Mei Y; Li L; Yang L; Wang Z
    J Ethnopharmacol; 2024 Jan; 319(Pt 1):117126. PubMed ID: 37716488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraconversion of Polar Ginsenosides, Their Transformation into Less-Polar Ginsenosides, and Ginsenoside Acetylation in Ginseng Flowers upon Baking and Steaming.
    Li X; Yao F; Fan H; Li K; Sun L; Liu Y
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29587462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh-performance liquid chromatography coupled to ion mobility quadrupole time-of-flight mass spectrometry profiling and unveiling the transformation of ginsenosides by the dual conditions of citric acid and high-pressure steaming.
    Li W; Wu X; Wu M; Yin J; Ding H; Wu T; Bie S; Li F; He Y; Han L; Yang W; Song X; Yu H; Li Z
    Rapid Commun Mass Spectrom; 2022 Oct; 36(20):e9363. PubMed ID: 35902380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Identification and visual analysis of ginsenosides in multi-steamed roots of Panax quinquefolium based on UPLC-Q-TOF-MS/MS and MALDI-MSI].
    Li HZ; Zhao YF; Wang DJ; Li HJ; He JX; Chen XF
    Zhongguo Zhong Yao Za Zhi; 2024 Mar; 49(6):1526-1539. PubMed ID: 38621936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remarkable Impact of Acidic Ginsenosides and Organic Acids on Ginsenoside Transformation from Fresh Ginseng to Red Ginseng.
    Liu Z; Xia J; Wang CZ; Zhang JQ; Ruan CC; Sun GZ; Yuan CS
    J Agric Food Chem; 2016 Jul; 64(26):5389-99. PubMed ID: 27295137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel neutral loss/product ion scan-incorporated integral approach for the untargeted characterization and comparison of the carboxyl-free ginsenosides from Panax ginseng, Panax quinquefolius, and Panax notoginseng.
    Yang WZ; Shi XJ; Yao CL; Huang Y; Hou JJ; Han SM; Feng ZJ; Wei WL; Wu WY; Guo DA
    J Pharm Biomed Anal; 2020 Jan; 177():112813. PubMed ID: 31472326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: Its application in Panax ginseng, Panax quinquefolium and Panax notoginseng to characterize 437 potential new ginsenosides.
    Yang WZ; Ye M; Qiao X; Liu CF; Miao WJ; Bo T; Tao HY; Guo DA
    Anal Chim Acta; 2012 Aug; 739():56-66. PubMed ID: 22819050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous quantification of twenty-one ginsenosides and their three aglycones in rat plasma by a developed UFLC-MS/MS assay: Application to a pharmacokinetic study of red ginseng.
    Zhou QL; Zhu DN; Yang YF; Xu W; Yang XW
    J Pharm Biomed Anal; 2017 Apr; 137():1-12. PubMed ID: 28086165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Determination of nine ginsenosides in health foods by solid extraction phase-ultra performance liquid chromatography-tandem mass spectrometry].
    Chen S; Feng R; Lin X; Liang T; He Q
    Se Pu; 2021 May; 39(5):526-533. PubMed ID: 34227337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes of Ginsenoside Composition in the Creation of Black Ginseng Leaf.
    Chen W; Balan P; Popovich DG
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32570758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in-source multiple collision-neutral loss filtering based nontargeted metabolomics approach for the comprehensive analysis of malonyl-ginsenosides from Panax ginseng, P. quinquefolius, and P. notoginseng.
    Shi XJ; Yang WZ; Qiu S; Yao CL; Shen Y; Pan HQ; Bi QR; Yang M; Wu WY; Guo DA
    Anal Chim Acta; 2017 Feb; 952():59-70. PubMed ID: 28010843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Identification of Characteristic Chemical Constituents of
    Jinbiao L; Xinyue Z; Shenshen Y; Shuo W; Chengcheng L; Bin Y; Yubo L; Ting C
    J Anal Methods Chem; 2022; 2022():6463770. PubMed ID: 35340764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remarkable impact of steam temperature on ginsenosides transformation from fresh ginseng to red ginseng.
    Xu XF; Gao Y; Xu SY; Liu H; Xue X; Zhang Y; Zhang H; Liu MN; Xiong H; Lin RC; Li XR
    J Ginseng Res; 2018 Jul; 42(3):277-287. PubMed ID: 29983609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the chemical transformation of 20(S)-protopanaxatriol (PPT)-type ginsenosides R(e), R(g2), and R(f) using rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (RRLC-Q-TOF-MS).
    Wu W; Qin Q; Guo Y; Sun J; Liu S
    J Agric Food Chem; 2012 Oct; 60(40):10007-14. PubMed ID: 22991995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profiling and multivariate statistical analysis of Panax ginseng based on ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry.
    Wu W; Sun L; Zhang Z; Guo Y; Liu S
    J Pharm Biomed Anal; 2015 Mar; 107():141-50. PubMed ID: 25590943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive Identification of Ginsenosides in the Roots and Rhizomes of
    Wang HP; Wang ZJ; Du J; Lin ZZ; Zhao C; Zhang R; Yin Q; Fan CL; Peng P; Wang ZB
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770610
    [No Abstract]   [Full Text] [Related]  

  • 19. Spatial metabolomics method to reveal differential metabolomes in microregions of Panax quinquefolius roots by using ultra-performance liquid chromatography quadrupole/time of flight-mass spectrometry and desorption electrospray ionization mass spectrometry imaging.
    Luo S; Yang X; Zhang Y; Kuang T; Tang C
    Food Chem; 2024 Mar; 435():137504. PubMed ID: 37813026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A practical strategy enabling more reliable identification of ginsenosides from Panax quinquefolius flower by dimension-enhanced liquid chromatography/mass spectrometry and quantitative structure-retention relationship-based retention behavior prediction.
    Sun MX; Li XH; Jiang MT; Zhang L; Ding MX; Zou YD; Gao XM; Yang WZ; Wang HD; Guo DA
    J Chromatogr A; 2023 Sep; 1706():464243. PubMed ID: 37567002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.