BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38338420)

  • 1. Computational Approaches to Evaluate the Acetylcholinesterase Binding Interaction with Taxifolin for the Management of Alzheimer's Disease.
    Ahmad V; Alotibi I; Alghamdi AA; Ahmad A; Jamal QMS; Srivastava S
    Molecules; 2024 Jan; 29(3):. PubMed ID: 38338420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Silico Analysis of Green Tea Polyphenols as Inhibitors of AChE and BChE Enzymes in Alzheimer's Disease Treatment.
    Ali B; Jamal QM; Shams S; Al-Wabel NA; Siddiqui MU; Alzohairy MA; Al Karaawi MA; Kesari KK; Mushtaq G; Kamal MA
    CNS Neurol Disord Drug Targets; 2016; 15(5):624-8. PubMed ID: 26996169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Natural Compounds of the Apple as Inhibitors against Cholinesterase for the Treatment of Alzheimer's Disease: An In Silico Molecular Docking Simulation and ADMET Study.
    Jamal QMS; Khan MI; Alharbi AH; Ahmad V; Yadav BS
    Nutrients; 2023 Mar; 15(7):. PubMed ID: 37049419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential acetylcholinesterase inhibitors to treat Alzheimer's disease.
    Saud A; Krishnaraju V; Taha A; Kalpana K; Malarkodi V; Durgaramani S; Vinoth Prabhu V; Saleh FA; Ezhilarasan S
    Eur Rev Med Pharmacol Sci; 2024 Mar; 28(6):2522-2537. PubMed ID: 38567612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering the Interactions of Bioactive Compounds in Selected Traditional Medicinal Plants against Alzheimer's Diseases via Pharmacophore Modeling, Auto-QSAR, and Molecular Docking Approaches.
    Ojo OA; Ojo AB; Okolie C; Nwakama MC; Iyobhebhe M; Evbuomwan IO; Nwonuma CO; Maimako RF; Adegboyega AE; Taiwo OA; Alsharif KF; Batiha GE
    Molecules; 2021 Apr; 26(7):. PubMed ID: 33915968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Piperazine-2-carboxylic acid derivatives as MTDLs anti-Alzheimer agents: Anticholinesterase activity, mechanistic aspect, and molecular modeling studies.
    Soliman AM; Abd El-Wahab HAA; Akincioglu H; Gülçin İ; Omar FA
    Bioorg Chem; 2024 Jan; 142():106916. PubMed ID: 37913584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining in silico and in vitro approaches to evaluate the acetylcholinesterase inhibitory profile of some commercially available flavonoids in the management of Alzheimer's disease.
    Kuppusamy A; Arumugam M; George S
    Int J Biol Macromol; 2017 Feb; 95():199-203. PubMed ID: 27871793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospective Application of Two New Pyridine-Based Zinc (II) Amide Carboxylate in Management of Alzheimer's Disease: Synthesis, Characterization, Computational and in vitro Approaches.
    Zafar R; Naureen H; Zubair M; Shahid K; Saeed Jan M; Akhtar S; Ahmad H; Waseem W; Haider A; Ali S; Tariq M; Sadiq A
    Drug Des Devel Ther; 2021; 15():2679-2694. PubMed ID: 34188447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors:
    Makhaeva GF; Kovaleva NV; Boltneva NP; Rudakova EV; Lushchekina SV; Astakhova TY; Serkov IV; Proshin AN; Radchenko EV; Palyulin VA; Korabecny J; Soukup O; Bachurin SO; Richardson RJ
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacophore-based drug design of AChE and BChE dual inhibitors as potential anti-Alzheimer's disease agents.
    Gao H; Jiang Y; Zhan J; Sun Y
    Bioorg Chem; 2021 Sep; 114():105149. PubMed ID: 34252860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetylcholinesterase inhibitory activities of some flavonoids from the root bark of
    Cuong NM; Khanh PN; Nhung LTH; Ha NX; Huong TT; Bauerova K; Kim YH; Tung DD; Thuy TT; Anh NTH
    J Biomol Struct Dyn; 2024 Jun; 42(9):4888-4901. PubMed ID: 37325850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Butyrylcholinesterase and Monoamine Oxidase B Targeted Ligands and their Putative Application in Alzheimer's Treatment: A Computational Strategy.
    Jabir NR; Rehman MT; Tabrez S; Alserihi RF; AlAjmi MF; Khan MS; Husain FM; Ahmed BA
    Curr Pharm Des; 2021; 27(20):2425-2434. PubMed ID: 33634754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, synthesis, and evaluation of novel cinnamic acid-tryptamine hybrid for inhibition of acetylcholinesterase and butyrylcholinesterase.
    Ghafary S; Ghobadian R; Mahdavi M; Nadri H; Moradi A; Akbarzadeh T; Najafi Z; Sharifzadeh M; Edraki N; Moghadam FH; Amini M
    Daru; 2020 Dec; 28(2):463-477. PubMed ID: 32372339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New indole derivatives as multitarget anti-Alzheimer's agents: synthesis, biological evaluation and molecular dynamics.
    Azmy EM; Nassar IF; Hagras M; Fawzy IM; Hegazy M; Mokhtar MM; Yehia AM; Ismail NS; Lashin WH
    Future Med Chem; 2023 Mar; 15(6):473-495. PubMed ID: 37125532
    [No Abstract]   [Full Text] [Related]  

  • 15. In silico, theoretical biointerface analysis and in vitro kinetic analysis of amine compounds interaction with acetylcholinesterase and butyrylcholinesterase.
    Kandasamy S; Loganathan C; Sakayanathan P; Karthikeyan S; Stephen AD; Marimuthu DK; Ravichandran S; Sivalingam V; Thayumanavan P
    Int J Biol Macromol; 2021 Aug; 185():750-760. PubMed ID: 34216669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening and identification of secondary metabolites in the bark of
    Khare N; Maheshwari SK; Jha AK
    J Biomol Struct Dyn; 2021 Oct; 39(16):5988-5998. PubMed ID: 32720564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amiridine-piperazine hybrids as cholinesterase inhibitors and potential multitarget agents for Alzheimer's disease treatment.
    Makhaeva GF; Lushchekina SV; Kovaleva NV; Yu Astakhova T; Boltneva NP; Rudakova EV; Serebryakova OG; Proshin AN; Serkov IV; Trofimova TP; Tafeenko VA; Radchenko EV; Palyulin VA; Fisenko VP; Korábečný J; Soukup O; Richardson RJ
    Bioorg Chem; 2021 Jul; 112():104974. PubMed ID: 34029971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel 2-pheynlbenzofuran derivatives as selective butyrylcholinesterase inhibitors for Alzheimer's disease.
    Kumar A; Pintus F; Di Petrillo A; Medda R; Caria P; Matos MJ; Viña D; Pieroni E; Delogu F; Era B; Delogu GL; Fais A
    Sci Rep; 2018 Mar; 8(1):4424. PubMed ID: 29535344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of New Chromenone Derivatives as Cholinesterase Inhibitors and Molecular Docking Studies.
    Iqbal J; Abbasi MSA; Zaib S; Afridi S; Furtmann N; Bajorath J; Langer P
    Med Chem; 2018; 14(8):809-817. PubMed ID: 29473519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of 4-substituted benzyl-2-triazole-linked-tryptamine-paeonol derivatives and evaluation of their selective inhibitions against butyrylcholinesterase and monoamine oxidase-B.
    Oh JM; Kang Y; Hwang JH; Park JH; Shin WH; Mun SK; Lee JU; Yee ST; Kim H
    Int J Biol Macromol; 2022 Sep; 217():910-921. PubMed ID: 35908673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.