These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 38338424)
41. Detection of fraud in high-quality rice by near-infrared spectroscopy. Liu Y; Li Y; Peng Y; Yang Y; Wang Q J Food Sci; 2020 Sep; 85(9):2773-2782. PubMed ID: 32713030 [TBL] [Abstract][Full Text] [Related]
42. Rapid nondestructive detecting of sorghum varieties based on hyperspectral imaging and convolutional neural network. Bu Y; Jiang X; Tian J; Hu X; Han L; Huang D; Luo H J Sci Food Agric; 2023 Jun; 103(8):3970-3983. PubMed ID: 36397181 [TBL] [Abstract][Full Text] [Related]
43. Rapid and nondestructive detection of marine fishmeal adulteration by hyperspectral imaging and machine learning. Kong D; Sun D; Qiu R; Zhang W; Liu Y; He Y Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 273():120990. PubMed ID: 35183858 [TBL] [Abstract][Full Text] [Related]
44. Laser-induced breakdown spectroscopy assisted chemometric methods for rice geographic origin classification. Yang P; Zhou R; Zhang W; Tang S; Hao Z; Li X; Lu Y; Zeng X Appl Opt; 2018 Oct; 57(28):8297-8302. PubMed ID: 30461781 [TBL] [Abstract][Full Text] [Related]
45. A Hyperspectral Imaging Approach for Classifying Geographical Origins of Rhizoma Atractylodis Macrocephalae Using the Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI). Ru C; Li Z; Tang R Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31052476 [TBL] [Abstract][Full Text] [Related]
46. Rapid and nondestructive watermelon (Citrullus lanatus) seed viability detection based on visible near-infrared hyperspectral imaging technology and machine learning algorithms. Sun J; Nirere A; Dusabe KD; Yuhao Z; Adrien G J Food Sci; 2024 Jul; 89(7):4403-4418. PubMed ID: 38957090 [TBL] [Abstract][Full Text] [Related]
47. A Micro-Damage Detection Method of Litchi Fruit Using Hyperspectral Imaging Technology. Xiong J; Lin R; Bu R; Liu Z; Yang Z; Yu L Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495421 [TBL] [Abstract][Full Text] [Related]
48. Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer. Gutiérrez S; Tardaguila J; Fernández-Novales J; Diago MP PLoS One; 2015; 10(11):e0143197. PubMed ID: 26600316 [TBL] [Abstract][Full Text] [Related]
49. Monitoring fungal growth on brown rice grains using rapid and non-destructive hyperspectral imaging. Siripatrawan U; Makino Y Int J Food Microbiol; 2015 Apr; 199():93-100. PubMed ID: 25662486 [TBL] [Abstract][Full Text] [Related]
50. Application of hyperspectral imaging and chemometric calibrations for variety discrimination of maize seeds. Zhang X; Liu F; He Y; Li X Sensors (Basel); 2012 Dec; 12(12):17234-46. PubMed ID: 23235456 [TBL] [Abstract][Full Text] [Related]
51. Off-flavor profiling of cultured salmonids using hyperspectral imaging combined with machine learning. Sun D; Zhou C; Hu J; Li L; Ye H Food Chem; 2023 May; 408():135166. PubMed ID: 36521293 [TBL] [Abstract][Full Text] [Related]
52. Improved Classification Performance of Bacteria in Interference Using Raman and Fourier-Transform Infrared Spectroscopy Combined with Machine Learning. Zhang P; Xu J; Du B; Yang Q; Liu B; Xu J; Tong Z Molecules; 2024 Jun; 29(13):. PubMed ID: 38998917 [TBL] [Abstract][Full Text] [Related]
53. Identification of different varieties of sesame oil using near-infrared hyperspectral imaging and chemometrics algorithms. Xie C; Wang Q; He Y PLoS One; 2014; 9(5):e98522. PubMed ID: 24879306 [TBL] [Abstract][Full Text] [Related]
54. Rapid and non-destructive analysis for the identification of multi-grain rice seeds with near-infrared spectroscopy. Chen J; Li M; Pan T; Pang L; Yao L; Zhang J Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():179-185. PubMed ID: 31035128 [TBL] [Abstract][Full Text] [Related]
55. Rapid and Nondestructive Measurement of Rice Seed Vitality of Different Years Using Near-Infrared Hyperspectral Imaging. He X; Feng X; Sun D; Liu F; Bao Y; He Y Molecules; 2019 Jun; 24(12):. PubMed ID: 31207950 [TBL] [Abstract][Full Text] [Related]
56. Application of invasive weed optimization and least square support vector machine for prediction of beef adulteration with spoiled beef based on visible near-infrared (Vis-NIR) hyperspectral imaging. Zhao HT; Feng YZ; Chen W; Jia GF Meat Sci; 2019 May; 151():75-81. PubMed ID: 30716565 [TBL] [Abstract][Full Text] [Related]
57. Machine learning in the classification of asian rust severity in soybean using hyperspectral sensor. Santana DC; Otone JDQ; Baio FHR; Teodoro LPR; Alves MEM; Junior CADS; Teodoro PE Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 313():124113. PubMed ID: 38447444 [TBL] [Abstract][Full Text] [Related]
58. Evaluation of quinclorac toxicity and alleviation by salicylic acid in rice seedlings using ground-based visible/near-infrared hyperspectral imaging. Wang J; Zhang C; Shi Y; Long M; Islam F; Yang C; Yang S; He Y; Zhou W Plant Methods; 2020; 16():30. PubMed ID: 32165910 [TBL] [Abstract][Full Text] [Related]
59. Soluble solid content and firmness index assessment and maturity discrimination of Malus micromalus Makino based on near-infrared hyperspectral imaging. Gao Q; Wang P; Niu T; He D; Wang M; Yang H; Zhao X Food Chem; 2022 Feb; 370():131013. PubMed ID: 34509150 [TBL] [Abstract][Full Text] [Related]
60. [Origin identification of Poria cocos based on hyperspectral imaging technology]. Sun X; Zhang DT; Wang H; Zhou C; Yang J; Peng DY; Zhang XB Zhongguo Zhong Yao Za Zhi; 2023 Aug; 48(16):4337-4346. PubMed ID: 37802860 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]