These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 3833858)
1. Diurnal variations of brain noradrenaline metabolism of the methylmercury chloride-administered rat with reference to an altered circadian rhythm of paradoxical sleep. Arito H; Oguri M; Tanaka S Ind Health; 1985; 23(4):245-53. PubMed ID: 3833858 [No Abstract] [Full Text] [Related]
2. Changes in circadian sleep-waking rhythms of rats following administration of methylmercury chloride. Arito H; Sudo A; Hara N; Nakagaki K; Torii S Ind Health; 1982; 20(1):55-65. PubMed ID: 7068451 [No Abstract] [Full Text] [Related]
3. Effect of methylmercury chloride on sleep-waking rhythms in rats. Arito H; Hara N; Torii S Toxicology; 1983 Nov; 28(4):335-45. PubMed ID: 6648981 [TBL] [Abstract][Full Text] [Related]
4. [Changes in cyclic-AMP levels in the brain of rat administered methylmercury chloride]. Sano K; Shimojo N; Yamaguchi S Sangyo Igaku; 1989 Nov; 31(6):434-5. PubMed ID: 2559222 [No Abstract] [Full Text] [Related]
5. Relationships between brain concentrations of desipramine and paradoxical sleep inhibition in the rat. Baumann P; Gaillard JM; Perey M; Justafré JC; Le P J Neural Transm; 1983; 56(2-3):105-16. PubMed ID: 6864206 [TBL] [Abstract][Full Text] [Related]
6. [Pharmacological suppression of paradoxical sleep in the newborn rat (author's transl)]. Valatx JL; Nowaczyck T Rev Electroencephalogr Neurophysiol Clin; 1977; 7(3):269-72. PubMed ID: 200989 [TBL] [Abstract][Full Text] [Related]
7. Continuous stimulation of dopaminergic receptors by rotigotine does not interfere with the sleep-wake cycle in the rat. Scheller D; Dürmüller N; Moser P; Porsolt RD Eur J Pharmacol; 2008 Apr; 584(1):111-7. PubMed ID: 18304531 [TBL] [Abstract][Full Text] [Related]
8. The effect of chronically administered mianserin, 8-hydroxymianserin and desmethylmianserin on the 'open field' behaviour and brain noradrenaline metabolism in the olfactory bulbectomized rat. Leonard BE; O'Connor WT Neuropsychobiology; 1987; 18(3):118-21. PubMed ID: 3453427 [TBL] [Abstract][Full Text] [Related]
9. Chronopharmacological Analysis of Antidepressant Activity of a Dual-Action Serotonin Noradrenaline Reuptake Inhibitor (SNRI), Milnacipran, in Rats. Kawai H; Machida M; Ishibashi T; Kudo N; Kawashima Y; Mitsumoto A Biol Pharm Bull; 2018; 41(2):213-219. PubMed ID: 29386481 [TBL] [Abstract][Full Text] [Related]
10. MDMA treatment 6 months earlier attenuates the effects of CP-94,253, a 5-HT1B receptor agonist, on motor control but not sleep inhibition. Gyongyosi N; Balogh B; Kirilly E; Kitka T; Kantor S; Bagdy G Brain Res; 2008 Sep; 1231():34-46. PubMed ID: 18638459 [TBL] [Abstract][Full Text] [Related]
11. Effects of chronic exposure to cadmium, lead and mercury of brain biogenic amines in the rat. Hrdina PD; Peters DA; Singhal RL Res Commun Chem Pathol Pharmacol; 1976 Nov; 15(3):483-93. PubMed ID: 996361 [TBL] [Abstract][Full Text] [Related]
12. [Deprivation of the paradoxical stage of sleep in rats and stimulation of cyclic AMP biosynthesis in brain homogenates by noradrenaline]. Panov AN Fiziol Zh SSSR Im I M Sechenova; 1978 Oct; 64(10):1478-81. PubMed ID: 214355 [No Abstract] [Full Text] [Related]
13. Translational neurophysiological markers for activity of the metabotropic glutamate receptor (mGluR2) modulator JNJ-40411813: Sleep EEG correlates in rodents and healthy men. Ahnaou A; de Boer P; Lavreysen H; Huysmans H; Sinha V; Raeymaekers L; Van De Casteele T; Cid JM; Van Nueten L; Macdonald GJ; Kemp JA; Drinkenburg WH Neuropharmacology; 2016 Apr; 103():290-305. PubMed ID: 26686390 [TBL] [Abstract][Full Text] [Related]
14. Reciprocal changes in noradrenaline and GABA levels in discrete brain regions upon rapid eye movement sleep deprivation in rats. Mehta R; Singh S; Khanday MA; Mallick BN Neurochem Int; 2017 Sep; 108():190-198. PubMed ID: 28427932 [TBL] [Abstract][Full Text] [Related]
15. Elevation of REM sleep following inhibition of protein synthesis. Stern WC; Morgane PJ; Panksepp J; Zolovick AJ; Jalowiec JE Brain Res; 1972 Nov; 47(1):254-8. PubMed ID: 4345032 [No Abstract] [Full Text] [Related]
16. alpha2 adrenoceptors are involved in the regulation of the gripping-induced immobility episodes in taiep rats. Eguibar JR; Cortés Mdel C; Valencia J; Arias-Montaño JA Synapse; 2006 Oct; 60(5):362-70. PubMed ID: 16838363 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the Effect of Soy and Casein-Derived Peptide Administration on Tyrosine and Catecholamine Metabolism in the Mouse Brain. Hino Y; Koyanagi A; Maebuchi M; Ichinose T; Furuya S J Nutr Sci Vitaminol (Tokyo); 2018; 64(5):329-334. PubMed ID: 30381622 [TBL] [Abstract][Full Text] [Related]
18. The effects of low-level lead exposure in developing rats: changes in circadian locomotor activity and hippocampal noradrenaline turnover. Collins MF; Hrdina PD; Whittle E; Singhal RL Can J Physiol Pharmacol; 1984 Apr; 62(4):430-5. PubMed ID: 6733588 [TBL] [Abstract][Full Text] [Related]
19. [Effects of intraventricular injection of 6-hydroxydopamine on sleep states and cerebral monoamines in cats]. Laguzzi R; Petitjean F; Pujol JE; Jouvet M C R Seances Soc Biol Fil; 1971; 165(7):1649-53. PubMed ID: 4340383 [No Abstract] [Full Text] [Related]
20. Study on diurnal variation of noradrenaline release in three brain regions of rats. Kohno Y; Tanaka M; Nakagawa R; Toshima N; Takeda S; Nagasaki N Kurume Med J; 1980; 27(4):227-32. PubMed ID: 7197738 [No Abstract] [Full Text] [Related] [Next] [New Search]