These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 38338674)

  • 1. Nanoparticle-Based Immunotherapy for Reversing T-Cell Exhaustion.
    Li F; Wang Y; Chen D; Du Y
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into T-cell exhaustion in liver cancer: from mechanism to therapy.
    Hao L; Li S; Hu X
    J Cancer Res Clin Oncol; 2023 Oct; 149(13):12543-12560. PubMed ID: 37423958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinvigorating exhausted CD8
    Hossain MA; Liu G; Dai B; Si Y; Yang Q; Wazir J; Birnbaumer L; Yang Y
    Med Res Rev; 2021 Jan; 41(1):156-201. PubMed ID: 32844499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T-cell exhaustion and stemness in antitumor immunity: Characteristics, mechanisms, and implications.
    Chi X; Luo S; Ye P; Hwang WL; Cha JH; Yan X; Yang WH
    Front Immunol; 2023; 14():1104771. PubMed ID: 36891319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exhausted CD8+T Cells in the Tumor Immune Microenvironment: New Pathways to Therapy.
    Jiang W; He Y; He W; Wu G; Zhou X; Sheng Q; Zhong W; Lu Y; Ding Y; Lu Q; Ye F; Hua H
    Front Immunol; 2020; 11():622509. PubMed ID: 33633741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oncolytic adenovirus decreases the proportion of TIM-3
    Liikanen I; Basnet S; Quixabeira DCA; Taipale K; Hemminki O; Oksanen M; Kankainen M; Juhila J; Kanerva A; Joensuu T; Tähtinen S; Hemminki A
    J Immunother Cancer; 2022 Feb; 10(2):. PubMed ID: 35193929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular insight into T cell exhaustion in hepatocellular carcinoma.
    Zhu Y; Tan H; Wang J; Zhuang H; Zhao H; Lu X
    Pharmacol Res; 2024 May; 203():107161. PubMed ID: 38554789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Combination of Anti-PD-L1 Treatment and Therapeutic Vaccination Facilitates Improved Retroviral Clearance via Reactivation of Highly Exhausted T Cells.
    Knuschke T; Kollenda S; Wenzek C; Zelinskyy G; Steinbach P; Dittmer U; Buer J; Epple M; Westendorf AM
    mBio; 2021 Feb; 12(1):. PubMed ID: 33531395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of the protein tyrosine phosphatase PTPN22 for adoptive T cell therapy facilitates CTL effector function but promotes T cell exhaustion.
    Teagle AR; Castro-Sanchez P; Brownlie RJ; Logan N; Kapoor SS; Wright D; Salmond RJ; Zamoyska R
    J Immunother Cancer; 2023 Dec; 11(12):. PubMed ID: 38056892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversing T-cell Dysfunction and Exhaustion in Cancer.
    Zarour HM
    Clin Cancer Res; 2016 Apr; 22(8):1856-64. PubMed ID: 27084739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD8
    Wang Q; Qin Y; Li B
    Cancer Lett; 2023 Apr; 559():216043. PubMed ID: 36584935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ginseng-derived nanoparticles reprogram macrophages to regulate arginase-1 release for ameliorating T cell exhaustion in tumor microenvironment.
    Lv Y; Li M; Weng L; Huang H; Mao Y; Yang DA; Wei Q; Zhao M; Wei Q; Rui K; Han X; Fan W; Cai X; Cao P; Cao M
    J Exp Clin Cancer Res; 2023 Nov; 42(1):322. PubMed ID: 38012650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T-Cell Exhaustion in Chronic Infections: Reversing the State of Exhaustion and Reinvigorating Optimal Protective Immune Responses.
    Saeidi A; Zandi K; Cheok YY; Saeidi H; Wong WF; Lee CYQ; Cheong HC; Yong YK; Larsson M; Shankar EM
    Front Immunol; 2018; 9():2569. PubMed ID: 30473697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversing T-cell exhaustion in immunotherapy: a review on current approaches and limitations.
    Tabana Y; Moon TC; Siraki A; Elahi S; Barakat K
    Expert Opin Ther Targets; 2021 May; 25(5):347-363. PubMed ID: 34056985
    [No Abstract]   [Full Text] [Related]  

  • 15. Distinct exhaustion features of T lymphocytes shape the tumor-immune microenvironment with therapeutic implication in patients with non-small-cell lung cancer.
    Kim CG; Kim G; Kim KH; Park S; Shin S; Yeo D; Shim HS; Yoon HI; Park SY; Ha SJ; Kim HR
    J Immunother Cancer; 2021 Dec; 9(12):. PubMed ID: 34907028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting PD-1 and Tim-3 Pathways to Reverse CD8 T-Cell Exhaustion and Enhance Ex Vivo T-Cell Responses to Autologous Dendritic/Tumor Vaccines.
    Liu J; Zhang S; Hu Y; Yang Z; Li J; Liu X; Deng L; Wang Y; Zhang X; Jiang T; Lu X
    J Immunother; 2016 May; 39(4):171-80. PubMed ID: 27070448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delivery of mRNA Encoding Interleukin-12 and a Stimulator of Interferon Genes Agonist Potentiates Antitumor Efficacy through Reversing T Cell Exhaustion.
    Wang B; Tang M; Chen Q; Ho W; Teng Y; Xiong X; Jia Z; Li X; Xu X; Zhang XQ
    ACS Nano; 2024 Jun; 18(24):15499-15516. PubMed ID: 38832815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical implications of T cell exhaustion for cancer immunotherapy.
    Chow A; Perica K; Klebanoff CA; Wolchok JD
    Nat Rev Clin Oncol; 2022 Dec; 19(12):775-790. PubMed ID: 36216928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD4
    Xiao M; Xie L; Cao G; Lei S; Wang P; Wei Z; Luo Y; Fang J; Yang X; Huang Q; Xu L; Guo J; Wen S; Wang Z; Wu Q; Tang J; Wang L; Chen X; Chen C; Zhang Y; Yao W; Ye J; He R; Huang J; Ye L
    J Immunother Cancer; 2022 May; 10(5):. PubMed ID: 35580929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blockades of effector T cell senescence and exhaustion synergistically enhance antitumor immunity and immunotherapy.
    Liu X; Si F; Bagley D; Ma F; Zhang Y; Tao Y; Shaw E; Peng G
    J Immunother Cancer; 2022 Oct; 10(10):. PubMed ID: 36192086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.