These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 38338727)

  • 21. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations.
    Deng Y; Roux B
    J Chem Phys; 2008 Mar; 128(11):115103. PubMed ID: 18361618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using Computationally-Determined Properties for Machine Learning Prediction of Self-Diffusion Coefficients in Pure Liquids.
    Allers JP; Priest CW; Greathouse JA; Alam TM
    J Phys Chem B; 2021 Dec; 125(47):12990-13002. PubMed ID: 34793167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of cyclohexane-water distribution coefficients for the SAMPL5 data set using molecular dynamics simulations with the OPLS-AA force field.
    Kenney IM; Beckstein O; Iorga BI
    J Comput Aided Mol Des; 2016 Nov; 30(11):1045-1058. PubMed ID: 27581968
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing the Performance of Different AMBER Protein Forcefields, Partial Charge Assignments, and Water Models for Absolute Binding Free Energy Calculations.
    Huggins DJ
    J Chem Theory Comput; 2022 Apr; 18(4):2616-2630. PubMed ID: 35266690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in.
    Ditzler MA; Otyepka M; Sponer J; Walter NG
    Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials.
    Eastman P; Galvelis R; Peláez RP; Abreu CRA; Farr SE; Gallicchio E; Gorenko A; Henry MM; Hu F; Huang J; Krämer A; Michel J; Mitchell JA; Pande VS; Rodrigues JP; Rodriguez-Guerra J; Simmonett AC; Singh S; Swails J; Turner P; Wang Y; Zhang I; Chodera JD; Fabritiis G; Markland TE
    ArXiv; 2023 Nov; ():. PubMed ID: 37986730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MDBuilder: a PyMOL plugin for the preparation of molecular dynamics simulations.
    Liu H; Jin Y; Ding H
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36790845
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ELF: An Extended-Lagrangian Free Energy Calculation Module for Multiple Molecular Dynamics Engines.
    Chen H; Fu H; Shao X; Chipot C; Cai W
    J Chem Inf Model; 2018 Jul; 58(7):1315-1318. PubMed ID: 29874076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A polarizable reactive force field for water to enable molecular dynamics simulations of proton transport.
    Asthana A; Wheeler DR
    J Chem Phys; 2013 May; 138(17):174502. PubMed ID: 23656139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Implementation of the QUBE Force Field in SOMD for High-Throughput Alchemical Free-Energy Calculations.
    Nelson L; Bariami S; Ringrose C; Horton JT; Kurdekar V; Mey ASJS; Michel J; Cole DJ
    J Chem Inf Model; 2021 May; 61(5):2124-2130. PubMed ID: 33886305
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast and flexible gpu accelerated binding free energy calculations within the amber molecular dynamics package.
    Mermelstein DJ; Lin C; Nelson G; Kretsch R; McCammon JA; Walker RC
    J Comput Chem; 2018 Jul; 39(19):1354-1358. PubMed ID: 29532496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The performance of ANI-ML potentials for ligand-n(H
    Temel M; Tayfuroglu O; Kocak A
    J Comput Chem; 2023 Feb; 44(4):559-569. PubMed ID: 36324248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulating Water Exchange to Buried Binding Sites.
    Ben-Shalom IY; Lin C; Kurtzman T; Walker RC; Gilson MK
    J Chem Theory Comput; 2019 Apr; 15(4):2684-2691. PubMed ID: 30835999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transferability evaluation of the deep potential model for simulating water-graphene confined system.
    Liu D; Wu J; Lu D
    J Chem Phys; 2023 Jul; 159(4):. PubMed ID: 37522409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DP/MM: A Hybrid Model for Zinc-Protein Interactions in Molecular Dynamics.
    Ding Y; Huang J
    J Phys Chem Lett; 2024 Jan; 15(2):616-627. PubMed ID: 38198685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uncertainty Quantification in Alchemical Free Energy Methods.
    Bhati AP; Wan S; Hu Y; Sherborne B; Coveney PV
    J Chem Theory Comput; 2018 Jun; 14(6):2867-2880. PubMed ID: 29678106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive Sampling Methods for Molecular Dynamics in the Era of Machine Learning.
    Kleiman DE; Nadeem H; Shukla D
    J Phys Chem B; 2023 Dec; 127(50):10669-10681. PubMed ID: 38081185
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep Boosted Molecular Dynamics: Accelerating Molecular Simulations with Gaussian Boost Potentials Generated Using Probabilistic Bayesian Deep Neural Network.
    Do HN; Miao Y
    J Phys Chem Lett; 2023 Jun; 14(21):4970-4982. PubMed ID: 37219922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An extensible interface for QM/MM molecular dynamics simulations with AMBER.
    Götz AW; Clark MA; Walker RC
    J Comput Chem; 2014 Jan; 35(2):95-108. PubMed ID: 24122798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calculation of Thermodynamic Properties of Bound Water Molecules.
    Yang Y; Abdallah AHA; Lill MA
    Methods Mol Biol; 2018; 1762():389-402. PubMed ID: 29594782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.