These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
416 related articles for article (PubMed ID: 38338783)
21. Cacao extract enriched in polyphenols prevents endocrine-metabolic disturbances in a rat model of prediabetes triggered by a sucrose rich diet. Castro MC; Villagarcía H; Nazar A; Arbeláez LG; Massa ML; Del Zotto H; Ríos JL; Schinella GR; Francini F J Ethnopharmacol; 2020 Jan; 247():112263. PubMed ID: 31580944 [TBL] [Abstract][Full Text] [Related]
22. Increased monocyte-derived reactive oxygen species in type 2 diabetes: role of endoplasmic reticulum stress. Restaino RM; Deo SH; Parrish AR; Fadel PJ; Padilla J Exp Physiol; 2017 Feb; 102(2):139-153. PubMed ID: 27859785 [TBL] [Abstract][Full Text] [Related]
23. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Bhatti JS; Sehrawat A; Mishra J; Sidhu IS; Navik U; Khullar N; Kumar S; Bhatti GK; Reddy PH Free Radic Biol Med; 2022 May; 184():114-134. PubMed ID: 35398495 [TBL] [Abstract][Full Text] [Related]
24. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Lu X; Xie Q; Pan X; Zhang R; Zhang X; Peng G; Zhang Y; Shen S; Tong N Signal Transduct Target Ther; 2024 Oct; 9(1):262. PubMed ID: 39353925 [TBL] [Abstract][Full Text] [Related]
25. Loss of TFB1M results in mitochondrial dysfunction that leads to impaired insulin secretion and diabetes. Sharoyko VV; Abels M; Sun J; Nicholas LM; Mollet IG; Stamenkovic JA; Göhring I; Malmgren S; Storm P; Fadista J; Spégel P; Metodiev MD; Larsson NG; Eliasson L; Wierup N; Mulder H Hum Mol Genet; 2014 Nov; 23(21):5733-49. PubMed ID: 24916378 [TBL] [Abstract][Full Text] [Related]
26. Molecular and metabolic evidence for mitochondrial defects associated with beta-cell dysfunction in a mouse model of type 2 diabetes. Lu H; Koshkin V; Allister EM; Gyulkhandanyan AV; Wheeler MB Diabetes; 2010 Feb; 59(2):448-59. PubMed ID: 19903739 [TBL] [Abstract][Full Text] [Related]
27. Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. Burgos-Morón E; Abad-Jiménez Z; Marañón AM; Iannantuoni F; Escribano-López I; López-Domènech S; Salom C; Jover A; Mora V; Roldan I; Solá E; Rocha M; Víctor VM J Clin Med; 2019 Sep; 8(9):. PubMed ID: 31487953 [TBL] [Abstract][Full Text] [Related]
28. An investigation into the potential action of polyphenols against human Islet Amyloid Polypeptide aggregation in type 2 diabetes. Mahboob A; Senevirathne DKL; Paul P; Nabi F; Khan RH; Chaari A Int J Biol Macromol; 2023 Jan; 225():318-350. PubMed ID: 36400215 [TBL] [Abstract][Full Text] [Related]
29. Plant versus animal based diets and insulin resistance, prediabetes and type 2 diabetes: the Rotterdam Study. Chen Z; Zuurmond MG; van der Schaft N; Nano J; Wijnhoven HAH; Ikram MA; Franco OH; Voortman T Eur J Epidemiol; 2018 Sep; 33(9):883-893. PubMed ID: 29948369 [TBL] [Abstract][Full Text] [Related]
30. Long-term models of oxidative stress and mitochondrial damage in insulin resistance progression. Graham EJ; Adler FR J Theor Biol; 2014 Jan; 340():238-50. PubMed ID: 24076453 [TBL] [Abstract][Full Text] [Related]
31. Reactive species and early manifestation of insulin resistance in type 2 diabetes. Fridlyand LE; Philipson LH Diabetes Obes Metab; 2006 Mar; 8(2):136-45. PubMed ID: 16448517 [TBL] [Abstract][Full Text] [Related]
32. The Link between Type 2 Diabetes and Neurodegeneration: Roles for Amyloid-β, Amylin, and Tau Proteins. Bharadwaj P; Wijesekara N; Liyanapathirana M; Newsholme P; Ittner L; Fraser P; Verdile G J Alzheimers Dis; 2017; 59(2):421-432. PubMed ID: 28269785 [TBL] [Abstract][Full Text] [Related]
33. Biodegradable Hollow Nanoscavengers Restore Liver Functions to Reverse Insulin Resistance in Type 2 Diabetes. Zhang Z; Zhou D; Luan X; Wang X; Zhu Z; Luo W; Yang J; Tang S; Song Y ACS Nano; 2023 May; 17(10):9313-9325. PubMed ID: 37155357 [TBL] [Abstract][Full Text] [Related]
34. Diabetes and branched-chain amino acids: What is the link? Bloomgarden Z J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529 [TBL] [Abstract][Full Text] [Related]
35. Oxidative stress pathways in pancreatic β-cells and insulin-sensitive cells and tissues: importance to cell metabolism, function, and dysfunction. Newsholme P; Keane KN; Carlessi R; Cruzat V Am J Physiol Cell Physiol; 2019 Sep; 317(3):C420-C433. PubMed ID: 31216193 [TBL] [Abstract][Full Text] [Related]
36. The role of peroxidation of mitochondrial membrane phospholipids in pancreatic β -cell failure. Ma ZA Curr Diabetes Rev; 2012 Jan; 8(1):69-75. PubMed ID: 22414059 [TBL] [Abstract][Full Text] [Related]
37. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. Newsholme P; Haber EP; Hirabara SM; Rebelato EL; Procopio J; Morgan D; Oliveira-Emilio HC; Carpinelli AR; Curi R J Physiol; 2007 Aug; 583(Pt 1):9-24. PubMed ID: 17584843 [TBL] [Abstract][Full Text] [Related]
38. The Role of MicroRNAs in Diabetes-Related Oxidative Stress. Qadir MMF; Klein D; Álvarez-Cubela S; Domínguez-Bendala J; Pastori RL Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31683538 [TBL] [Abstract][Full Text] [Related]
39. Targeting of mitochondrial reactive oxygen species production does not avert lipid-induced insulin resistance in muscle tissue from mice. Paglialunga S; van Bree B; Bosma M; Valdecantos MP; Amengual-Cladera E; Jörgensen JA; van Beurden D; den Hartog GJM; Ouwens DM; Briedé JJ; Schrauwen P; Hoeks J Diabetologia; 2012 Oct; 55(10):2759-2768. PubMed ID: 22782287 [TBL] [Abstract][Full Text] [Related]
40. Association between systemic oxidative stress and insulin resistance/sensitivity indices - the PREDIAS study. Kopprasch S; Srirangan D; Bergmann S; Graessler J; Schwarz PE; Bornstein SR Clin Endocrinol (Oxf); 2016 Jan; 84(1):48-54. PubMed ID: 25940301 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]