These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 38338794)

  • 21. A basal deuterostome genome viewed as a natural experiment.
    Andrew Cameron R; Davidson EH
    Gene; 2007 Dec; 406(1-2):1-7. PubMed ID: 17550788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The S. purpuratus genome: a comparative perspective.
    Materna SC; Berney K; Cameron RA
    Dev Biol; 2006 Dec; 300(1):485-95. PubMed ID: 17056028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolutionary dynamics of the wnt gene family: a lophotrochozoan perspective.
    Cho SJ; Vallès Y; Giani VC; Seaver EC; Weisblat DA
    Mol Biol Evol; 2010 Jul; 27(7):1645-58. PubMed ID: 20176615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A genome-wide survey of the evolutionarily conserved Wnt pathways in the sea urchin Strongylocentrotus purpuratus.
    Croce JC; Wu SY; Byrum C; Xu R; Duloquin L; Wikramanayake AH; Gache C; McClay DR
    Dev Biol; 2006 Dec; 300(1):121-31. PubMed ID: 17069790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of the receptor FGFRL1 from sea urchins and humans illustrates evolution of a zinc binding motif in the intracellular domain.
    Zhuang L; Karotki AV; Bruecker P; Trueb B
    BMC Biochem; 2009 Dec; 10():33. PubMed ID: 20021659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lineage-specific expansions provide genomic complexity among sea urchin GTPases.
    Beane WS; Voronina E; Wessel GM; McClay DR
    Dev Biol; 2006 Dec; 300(1):165-79. PubMed ID: 17014838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide signals of positive selection in strongylocentrotid sea urchins.
    Kober KM; Pogson GH
    BMC Genomics; 2017 Jul; 18(1):555. PubMed ID: 28732465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Putative multiadhesive protein from the marine sponge Geodia cydonium: cloning of the cDNA encoding a fibronectin-, an SRCR-, and a complement control protein module.
    Pahler S; Blumbach B; Müller I; Müller WE
    J Exp Zool; 1998 Oct; 282(3):332-43. PubMed ID: 9755483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity.
    Huang S; Yuan S; Guo L; Yu Y; Li J; Wu T; Liu T; Yang M; Wu K; Liu H; Ge J; Yu Y; Huang H; Dong M; Yu C; Chen S; Xu A
    Genome Res; 2008 Jul; 18(7):1112-26. PubMed ID: 18562681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Origin and evolution of laminin gene family diversity.
    Fahey B; Degnan BM
    Mol Biol Evol; 2012 Jul; 29(7):1823-36. PubMed ID: 22319142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RTK and TGF-beta signaling pathways genes in the sea urchin genome.
    Lapraz F; Röttinger E; Duboc V; Range R; Duloquin L; Walton K; Wu SY; Bradham C; Loza MA; Hibino T; Wilson K; Poustka A; McClay D; Angerer L; Gache C; Lepage T
    Dev Biol; 2006 Dec; 300(1):132-52. PubMed ID: 17084834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional diversification of sea urchin ABCC1 (MRP1) by alternative splicing.
    Gökirmak T; Campanale JP; Reitzel AM; Shipp LE; Moy GW; Hamdoun A
    Am J Physiol Cell Physiol; 2016 Jun; 310(11):C911-20. PubMed ID: 27053522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extraordinary diversity among members of the large gene family, 185/333, from the purple sea urchin, Strongylocentrotus purpuratus.
    Buckley KM; Smith LC
    BMC Mol Biol; 2007 Aug; 8():68. PubMed ID: 17697382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The ancestral complement system in sea urchins.
    Smith LC; Clow LA; Terwilliger DP
    Immunol Rev; 2001 Apr; 180():16-34. PubMed ID: 11414357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution of Innate Immunity: Clues from Invertebrates via Fish to Mammals.
    Buchmann K
    Front Immunol; 2014; 5():459. PubMed ID: 25295041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of the fibropellin gene family and patterns of fibropellin gene expression in sea urchin phylogeny.
    Bisgrove BW; Andrews ME; Raff RA
    J Mol Evol; 1995 Jul; 41(1):34-45. PubMed ID: 7608987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple lineage specific expansions within the guanylyl cyclase gene family.
    Fitzpatrick DA; O'Halloran DM; Burnell AM
    BMC Evol Biol; 2006 Mar; 6():26. PubMed ID: 16549024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel scavenger receptor-cysteine-rich (SRCR) domain containing scavenger receptor identified from mollusk mediated PAMP recognition and binding.
    Liu L; Yang J; Qiu L; Wang L; Zhang H; Wang M; Vinu SS; Song L
    Dev Comp Immunol; 2011 Feb; 35(2):227-39. PubMed ID: 20888856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sea urchin actin gene subtypes. Gene number, linkage and evolution.
    Lee JJ; Shott RJ; Rose SJ; Thomas TL; Britten RJ; Davidson EH
    J Mol Biol; 1984 Jan; 172(2):149-76. PubMed ID: 6319714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intermediary metabolism in sea urchin: the first inferences from the genome sequence.
    Goel M; Mushegian A
    Dev Biol; 2006 Dec; 300(1):282-92. PubMed ID: 16979151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.