These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38338812)

  • 21. Development of Aspirin-Inducible Biosensors in
    Chen JX; Steel H; Wu YH; Wang Y; Xu J; Rampley CPN; Thompson IP; Papachristodoulou A; Huang WE
    Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30658983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Directed Evolution of Transcription Factor-Based Biosensors for Altered Effector Specificity.
    Machado LFM; Dixon N
    Methods Mol Biol; 2022; 2461():175-193. PubMed ID: 35727451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Biosensor Strategy for E. coli Based on Ligand-Dependent Stabilization.
    Brandsen BM; Mattheisen JM; Noel T; Fields S
    ACS Synth Biol; 2018 Sep; 7(9):1990-1999. PubMed ID: 30064218
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of Colorimetric-Based Whole-Cell Biosensor for Organophosphorus Compounds by Engineering Transcription Regulator DmpR.
    Chong H; Ching CB
    ACS Synth Biol; 2016 Nov; 5(11):1290-1298. PubMed ID: 27346389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Vivo Screening Method for the Identification and Characterization of Prokaryotic, Metabolite-Responsive Transcription Factors.
    Bernauw AJ; De Kock V; Bervoets I
    Methods Mol Biol; 2022; 2516():113-141. PubMed ID: 35922625
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering an Acinetobacter regulon for biosensing and high-throughput enzyme screening in E. coli via flow cytometry.
    Jha RK; Kern TL; Fox DT; M Strauss CE
    Nucleic Acids Res; 2014 Jul; 42(12):8150-60. PubMed ID: 24861620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of novel metabolite-responsive transcription factors via transposon-mediated protein fusion.
    Younger AKD; Su PY; Shepard AJ; Udani SV; Cybulski TR; Tyo KEJ; Leonard JN
    Protein Eng Des Sel; 2018 Feb; 31(2):55-63. PubMed ID: 29385546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biosensor-Based Evolution and Elucidation of a Biosynthetic Pathway in Escherichia coli.
    Liu Y; Zhuang Y; Ding D; Xu Y; Sun J; Zhang D
    ACS Synth Biol; 2017 May; 6(5):837-848. PubMed ID: 28121425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering and characterization of copper and gold sensors in Escherichia coli and Synechococcus sp. PCC 7002.
    Lacey RF; Ye D; Ruffing AM
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2797-2808. PubMed ID: 30645690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. E. coli biosensor based on modular GFP and luxI/luxR cyclic amplification circuit for sensitive detection of lysine.
    Wang W; Zhang J; Tao H; Lv X; Deng Y; Li X
    Anal Bioanal Chem; 2022 Dec; 414(29-30):8299-8307. PubMed ID: 36253476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Growth Dependent Design Constraints of Transcription-Factor-Based Metabolite Biosensors.
    Hartline CJ; Zhang F
    ACS Synth Biol; 2022 Jul; 11(7):2247-2258. PubMed ID: 35700119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of transcriptional factor-based whole-cell biosensors to monitor and degrade antibiotics using mutant cells obtained via adaptive laboratory evolution.
    Li J; Qin Z; Zhang B; Wu X; Wu J; Peng L; Xiao Y
    J Hazard Mater; 2024 Jul; 473():134536. PubMed ID: 38759406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcription-Factor-based Biosensor Engineering for Applications in Synthetic Biology.
    Ding N; Zhou S; Deng Y
    ACS Synth Biol; 2021 May; 10(5):911-922. PubMed ID: 33899477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel, genetically encoded whole-cell biosensor for directed evolution of myrcene synthase in Escherichia coli.
    Chen C; Liu J; Yao G; Bao S; Wan X; Wang F; Wang K; Song T; Han P; Liu T; Jiang H
    Biosens Bioelectron; 2023 May; 228():115176. PubMed ID: 36913884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetically Encoded Biosensor Engineering for Application in Directed Evolution.
    Mao Y; Huang C; Zhou X; Han R; Deng Y; Zhou S
    J Microbiol Biotechnol; 2023 Oct; 33(10):1257-1267. PubMed ID: 37449325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design, Engineering, and Characterization of Prokaryotic Ligand-Binding Transcriptional Activators as Biosensors in Yeast.
    Ambri F; Snoek T; Skjoedt ML; Jensen MK; Keasling JD
    Methods Mol Biol; 2018; 1671():269-290. PubMed ID: 29170965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nucleotide kinase-based selection system for genetic switches.
    Ike K; Umeno D
    Methods Mol Biol; 2014; 1111():141-52. PubMed ID: 24549617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering tunable biosensors for monitoring putrescine in Escherichia coli.
    Chen XF; Xia XX; Lee SY; Qian ZG
    Biotechnol Bioeng; 2018 Apr; 115(4):1014-1027. PubMed ID: 29251347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing cadmium and mercury specificity of CadR-based E. coli biosensors by redesign of CadR.
    Tao HC; Peng ZW; Li PS; Yu TA; Su J
    Biotechnol Lett; 2013 Aug; 35(8):1253-8. PubMed ID: 23609235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptional cross-regulation of the catechol and protocatechuate branches of the beta-ketoadipate pathway contributes to carbon source-dependent expression of the Acinetobacter sp. strain ADP1 pobA gene.
    Brzostowicz PC; Reams AB; Clark TJ; Neidle EL
    Appl Environ Microbiol; 2003 Mar; 69(3):1598-606. PubMed ID: 12620848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.